cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309445 Coefficients in 7-adic expansion of 2^(1/5).

Original entry on oeis.org

4, 6, 1, 3, 6, 4, 3, 5, 4, 6, 5, 4, 0, 0, 6, 4, 3, 4, 5, 6, 2, 2, 2, 0, 6, 5, 5, 0, 3, 1, 1, 4, 0, 4, 6, 2, 0, 6, 0, 3, 6, 3, 2, 5, 4, 6, 4, 0, 5, 5, 2, 1, 4, 3, 4, 1, 0, 1, 1, 6, 0, 4, 1, 6, 0, 4, 5, 1, 1, 6, 2, 5, 2, 3, 0, 6, 1, 3, 6, 4, 0, 6, 2, 6, 4, 2, 0, 1, 6, 3, 6, 5, 1, 2, 4, 3, 3, 0, 4, 6, 2
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2019

Keywords

Crossrefs

Cf. A309450.
Digits of p-adic integers:
A290566 (5-adic, 2^(1/3));
A309446 (7-adic, 3^(1/5));
A309447 (7-adic, 4^(1/5));
A309448 (7-adic, 5^(1/5));
A309449 (7-adic, 6^(1/5)).

Programs

  • Maple
    op([1,3], padic:-rootp(x^5-2,7,101)); # Robert Israel, Aug 04 2019
  • PARI
    Vecrev(digits(truncate((2+O(7^100))^(1/5)), 7))
  • Ruby
    require 'OpenSSL'
    def f_a(ary, a)
      (0..ary.size - 1).inject(0){|s, i| s + ary[i] * a ** i}
    end
    def df(ary)
      (1..ary.size - 1).map{|i| i * ary[i]}
    end
    def A(c_ary, k, m, n)
      x = OpenSSL::BN.new((-f_a(df(c_ary), k)).to_s).mod_inverse(m).to_i % m
      f_ary = c_ary.map{|i| x * i}
      f_ary[1] += 1
      d_ary = []
      ary = [0]
      a, mod = k, m
      (n + 1).times{|i|
        b = a % mod
        d_ary << (b - ary[-1]) / m ** i
        ary << b
        a = f_a(f_ary, b)
        mod *= m
      }
      d_ary
    end
    def A309445(n)
      A([-2, 0, 0, 0, 0, 1], 4, 7, n)
    end
    p A309445(100)