A309445 Coefficients in 7-adic expansion of 2^(1/5).
4, 6, 1, 3, 6, 4, 3, 5, 4, 6, 5, 4, 0, 0, 6, 4, 3, 4, 5, 6, 2, 2, 2, 0, 6, 5, 5, 0, 3, 1, 1, 4, 0, 4, 6, 2, 0, 6, 0, 3, 6, 3, 2, 5, 4, 6, 4, 0, 5, 5, 2, 1, 4, 3, 4, 1, 0, 1, 1, 6, 0, 4, 1, 6, 0, 4, 5, 1, 1, 6, 2, 5, 2, 3, 0, 6, 1, 3, 6, 4, 0, 6, 2, 6, 4, 2, 0, 1, 6, 3, 6, 5, 1, 2, 4, 3, 3, 0, 4, 6, 2
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
op([1,3], padic:-rootp(x^5-2,7,101)); # Robert Israel, Aug 04 2019
-
PARI
Vecrev(digits(truncate((2+O(7^100))^(1/5)), 7))
-
Ruby
require 'OpenSSL' def f_a(ary, a) (0..ary.size - 1).inject(0){|s, i| s + ary[i] * a ** i} end def df(ary) (1..ary.size - 1).map{|i| i * ary[i]} end def A(c_ary, k, m, n) x = OpenSSL::BN.new((-f_a(df(c_ary), k)).to_s).mod_inverse(m).to_i % m f_ary = c_ary.map{|i| x * i} f_ary[1] += 1 d_ary = [] ary = [0] a, mod = k, m (n + 1).times{|i| b = a % mod d_ary << (b - ary[-1]) / m ** i ary << b a = f_a(f_ary, b) mod *= m } d_ary end def A309445(n) A([-2, 0, 0, 0, 0, 1], 4, 7, n) end p A309445(100)