A309489 Numbers k such that the sum of digits in odd places is equal to the sum of digits in even places in k!.
11, 18, 20, 25, 27, 28, 32, 35, 41, 43, 51, 57, 60, 68, 72, 74, 80, 102, 105, 107, 113, 121, 122, 138, 140, 145, 156, 161, 166, 171, 228, 233, 245, 282, 301, 307, 308, 311, 315, 329, 333, 335, 340, 347, 349, 351, 353, 366, 386, 412, 420, 454, 469, 478
Offset: 1
Links
- Daniel Starodubtsev, Table of n, a(n) for n = 1..300
Programs
-
Mathematica
aQ[n_] := Total[(d = IntegerDigits[n!])[[1;;-1;;2]]] == Total[d[[2;;-1;;2]]]; Select[Range[500], aQ] (* Amiram Eldar, Aug 04 2019 *) sdoeQ[n_]:=With[{nf=IntegerDigits[n!]},Total[Take[nf,{1,-1,2}]]==Total[Take[nf,{2,-1,2}]]]; Select[Range[500],sdoeQ] (* Harvey P. Dale, Jun 04 2025 *)
-
PARI
isok(k) = {my(d = digits(k!), so=0, se=0); for (i=1, #d, if (i%2, so += d[i], se += d[i])); so == se; } \\ Michel Marcus, Aug 04 2019
-
Python
def c(n): s = str(n); return sum(map(int, s[::2])) == sum(map(int, s[1::2])) def afind(limit): k, factk = 1, 1 while k <= limit: if c(factk): print(k, end=", ") k += 1; factk *= k afind(500) # Michael S. Branicky, Nov 18 2021
Comments