cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309489 Numbers k such that the sum of digits in odd places is equal to the sum of digits in even places in k!.

Original entry on oeis.org

11, 18, 20, 25, 27, 28, 32, 35, 41, 43, 51, 57, 60, 68, 72, 74, 80, 102, 105, 107, 113, 121, 122, 138, 140, 145, 156, 161, 166, 171, 228, 233, 245, 282, 301, 307, 308, 311, 315, 329, 333, 335, 340, 347, 349, 351, 353, 366, 386, 412, 420, 454, 469, 478
Offset: 1

Views

Author

Daniel Starodubtsev, Aug 04 2019

Keywords

Comments

Numbers k such that A000142(k) is a term of A135499. - Michel Marcus, Aug 04 2019

Crossrefs

Cf. A000142 (n!), A135499.

Programs

  • Mathematica
    aQ[n_] := Total[(d = IntegerDigits[n!])[[1;;-1;;2]]] == Total[d[[2;;-1;;2]]]; Select[Range[500], aQ] (* Amiram Eldar, Aug 04 2019 *)
    sdoeQ[n_]:=With[{nf=IntegerDigits[n!]},Total[Take[nf,{1,-1,2}]]==Total[Take[nf,{2,-1,2}]]]; Select[Range[500],sdoeQ] (* Harvey P. Dale, Jun 04 2025 *)
  • PARI
    isok(k) = {my(d = digits(k!), so=0, se=0); for (i=1, #d, if (i%2, so += d[i], se += d[i])); so == se; } \\ Michel Marcus, Aug 04 2019
    
  • Python
    def c(n): s = str(n); return sum(map(int, s[::2])) == sum(map(int, s[1::2]))
    def afind(limit):
        k, factk = 1, 1
        while k <= limit:
            if c(factk): print(k, end=", ")
            k += 1; factk *= k
    afind(500) # Michael S. Branicky, Nov 18 2021