cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A309494 a(1) = a(2) = a(3) = a(5) = 1, a(4) = 2; a(n) = a(n-a(n-3)) + a(n-a(n-4)) for n > 5.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 5, 8, 8, 7, 5, 2, 5, 13, 12, 18, 3, 5, 6, 4, 23, 21, 9, 5, 2, 5, 26, 14, 31, 3, 5, 6, 4, 36, 34, 9, 5, 2, 5, 39, 14, 44, 3, 5, 6, 4, 49, 47, 9, 5, 2, 5, 52, 14, 57, 3, 5, 6, 4, 62, 60, 9, 5, 2, 5, 65, 14, 70, 3, 5, 6, 4, 75, 73, 9, 5, 2, 5, 78, 14, 83, 3, 5, 6, 4, 88, 86, 9, 5, 2, 5, 91
Offset: 1

Views

Author

Altug Alkan, Aug 04 2019

Keywords

Comments

A well-defined solution sequence for recurrence a(n) = a(n-a(n-3)) + a(n-a(n-4)).

Crossrefs

Programs

  • Maple
    for n from 1 to 5 do a[n]:= `if`(n=4,2,1) od:
    for n from 6 to 100 do a[n]:= a[n-a[n-3]] + a[n-a[n-4]] od:
    seq(a[n],n=1..100); # Robert Israel, Aug 07 2019
  • Mathematica
    a[1]=a[2]=a[3]=a[5]=1; a[4]=2; a[n_] := a[n] = a[n - a[n-3]] + a[n - a[n-4]]; Array[a, 93] (* Giovanni Resta, Aug 07 2019 *)
  • PARI
    q=vector(100); q[1]=q[2]=q[3]=q[5]=1; q[4]=2; for(n=6, #q, q[n]=q[n-q[n-3]]+q[n-q[n-4]]); q
    
  • PARI
    Vec(x*(1 + x + x^2 + 2*x^3 + x^4 + 2*x^5 + 3*x^6 + 5*x^7 + 8*x^8 + 8*x^9 + 7*x^10 + 5*x^11 + 2*x^12 + 3*x^13 + 11*x^14 + 10*x^15 + 14*x^16 + x^17 + x^18 - 6*x^20 + 7*x^21 + 5*x^22 - 5*x^23 - 5*x^24 - 2*x^25 - 4*x^26 + x^27 - 9*x^28 - 3*x^29 - 2*x^30 - 3*x^31 - 3*x^32 + x^33 - 2*x^34 - 2*x^36 - 2*x^41) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12)^2) + O(x^80)) \\ Colin Barker, Aug 08 2019

Formula

For k > 1,
a(13*k-9) = 13*k-8,
a(13*k-8) = 3,
a(13*k-7) = 5,
a(13*k-6) = 6,
a(13*k-5) = 4,
a(13*k-4) = 13*k-3,
a(13*k-3) = 13*k-5,
a(13*k-2) = 9,
a(13*k-1) = 5,
a(13*k) = 2,
a(13*k+1) = 5,
a(13*k+2) = 13*k,
a(13*k+3) = 14.
From Colin Barker, Aug 05 2019: (Start)
G.f.: x*(1 + x + x^2 + 2*x^3 + x^4 + 2*x^5 + 3*x^6 + 5*x^7 + 8*x^8 + 8*x^9 + 7*x^10 + 5*x^11 + 2*x^12 + 3*x^13 + 11*x^14 + 10*x^15 + 14*x^16 + x^17 + x^18 - 6*x^20 + 7*x^21 + 5*x^22 - 5*x^23 - 5*x^24 - 2*x^25 - 4*x^26 + x^27 - 9*x^28 - 3*x^29 - 2*x^30 - 3*x^31 - 3*x^32 + x^33 - 2*x^34 - 2*x^36 - 2*x^41) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12)^2).
a(n) = 2*a(n-13) - a(n-26) for n > 42.
(End)

A309567 a(1) = 4, a(2) = 2, a(3) = 5, a(4) = 3, a(5) = 1; a(n) = a(n-a(n-1)) + a(n-a(n-4)) for n > 5.

Original entry on oeis.org

4, 2, 5, 3, 1, 4, 7, 5, 8, 6, 4, 12, 5, 13, 6, 9, 17, 5, 18, 6, 9, 22, 5, 23, 11, 9, 27, 5, 28, 11, 9, 32, 5, 33, 11, 14, 37, 5, 38, 11, 14, 42, 5, 43, 11, 14, 47, 5, 48, 16, 14, 52, 5, 53, 16, 14, 57, 5, 58, 16, 14, 62, 5, 63, 16, 19, 67, 5, 68, 16, 19, 72, 5, 73, 16, 19, 77, 5, 78, 16, 19, 82, 5, 83, 21, 19, 87, 5
Offset: 1

Views

Author

Altug Alkan and Rémy Sigrist, Aug 08 2019

Keywords

Comments

A well-defined quasi-periodic solution for Hofstadter V recurrence (a(n) = a(n-a(n-1)) + a(n-a(n-4))).

Crossrefs

Programs

  • Maple
    f:= proc(n) local k,j;
      j:= n mod 5;
      k:= (n-j)/5;
      if j=0 then 5*floor(sqrt(k-1))+1
      elif j=1 then 5*round(sqrt(k))-1
      elif j=2 then 5*k+2
      elif j=3 then 5
      else 5*k+3
      fi
    end proc:
    f(1):= 4:
    map(f, [$1..100]); # Robert Israel, Aug 08 2019
  • Mathematica
    a[n_] := a[n] = If[n < 6, {4, 2, 5, 3, 1}[[n]], a[n - a[n-1]] + a[n - a[n-4]]]; Array[a, 88] (* Giovanni Resta, Aug 08 2019 *)
  • PARI
    q=vector(100); q[1]=4; q[2]=2; q[3]=5; q[4]=3; q[5]=1; for(n=6, #q, q[n]=q[n-q[n-1]]+q[n-q[n-4]]); q

Formula

For k >= 1:
a(5*k) = 5*floor(sqrt(k-1))+1,
a(5*k+1) = 5*round(sqrt(k))-1,
a(5*k+2) = 5*k+2,
a(5*k+3) = 5,
a(5*k+4) = 5*k+3.

A309496 a(1) = 1, a(2) = 3, a(3) = a(4) = a(6) = 6, a(5) = 2, a(7) = 4; a(n) = a(n-a(n-4)) + a(n-a(n-5)) for n > 7.

Original entry on oeis.org

1, 3, 6, 6, 2, 6, 4, 6, 10, 12, 6, 12, 10, 9, 16, 18, 6, 16, 18, 9, 22, 24, 6, 22, 24, 9, 28, 30, 6, 28, 30, 9, 34, 36, 6, 34, 36, 9, 40, 42, 6, 40, 42, 9, 46, 48, 6, 46, 48, 9, 52, 54, 6, 52, 54, 9, 58, 60, 6, 58, 60, 9, 64, 66, 6, 64, 66, 9, 70, 72, 6, 70, 72, 9, 76, 78, 6, 76, 78, 9, 82, 84, 6, 82, 84, 9, 88
Offset: 1

Views

Author

Altug Alkan, Aug 05 2019

Keywords

Comments

A well-defined solution sequence for recurrence a(n) = a(n-a(n-4)) + a(n-a(n-5)).

Crossrefs

Programs

  • Magma
    I:=[1,3,6,6,2,6,4];[n le 7 select I[n] else Self(n-Self(n-4))+Self(n-Self(n-5)): n in [1..90]]; // Marius A. Burtea, Aug 07 2019
  • Mathematica
    a[n_] := a[n] = If[n < 8, {1, 3, 6, 6, 2, 6, 4}[[n]], a[n - a[n-4]] + a[n - a[n-5]]]; Array[a, 87] (* Giovanni Resta, Aug 07 2019 *)
  • PARI
    q=vector(100); q[1]=1; q[2]=3; q[3]=q[4]=q[6]=6; q[5]=2; q[7]=4; for(n=8, #q, q[n] = q[n-q[n-4]]+q[n-q[n-5]]); q
    
  • PARI
    Vec(x*(1 + 3*x + 6*x^2 + 5*x^3 - x^4 - 3*x^6 + x^7 - 2*x^8 + 3*x^9 + x^10 + 2*x^11 - x^13 - 3*x^16 - 2*x^17 + 2*x^18 + 2*x^20 - 2*x^21) / ((1 - x)^2*(1 + x)*(1 - x + x^2)*(1 + x + x^2)^2) + O(x^80)) \\ Colin Barker, Aug 15 2019
    

Formula

For k > 2:
a(6*k-4) = 9,
a(6*k-3) = 6*k-2,
a(6*k-2) = 6*k,
a(6*k-1) = 6,
a(6*k) = 6*k-2,
a(6*k+1) = 6*k.
From Colin Barker, Aug 05 2019: (Start)
G.f.: x*(1 + 3*x + 6*x^2 + 5*x^3 - x^4 - 3*x^6 + x^7 - 2*x^8 + 3*x^9 + x^10 + 2*x^11 - x^13 - 3*x^16 - 2*x^17 + 2*x^18 + 2*x^20 - 2*x^21) / ((1 - x)^2*(1 + x)*(1 - x + x^2)*(1 + x + x^2)^2).
a(n) = a(n-3) + a(n-6) - a(n-9) for n > 22.
(End)

A309554 a(1) = a(6) = 1, a(2) = a(3) = a(8) = 2, a(4) = a(7) = 7, a(5) = 5; a(n) = a(n-a(n-1)) + a(n-a(n-3)) for n > 8.

Original entry on oeis.org

1, 2, 2, 7, 5, 1, 7, 2, 9, 3, 11, 3, 6, 4, 14, 5, 9, 16, 6, 15, 6, 10, 8, 21, 21, 21, 2, 28, 3, 30, 3, 6, 4, 33, 5, 9, 35, 6, 34, 6, 10, 8, 40, 40, 40, 2, 47, 3, 49, 3, 6, 4, 52, 5, 9, 54, 6, 53, 6, 10, 8, 59, 59, 59, 2, 66, 3, 68, 3, 6, 4, 71, 5, 9, 73, 6, 72, 6, 10, 8, 78, 78, 78, 2, 85, 3, 87, 3, 6, 4
Offset: 1

Views

Author

Altug Alkan and Rémy Sigrist, Aug 07 2019

Keywords

Comments

A well-defined solution sequence for recurrence a(n) = a(n-a(n-1)) + a(n-a(n-3)).

Crossrefs

Programs

  • Magma
    I:=[1,2,2,7,5,1,7,2];[n le 8 select I[n] else Self(n-Self(n-1))+Self(n-Self(n-3)): n in [1..90]]; // Marius A. Burtea, Aug 08 2019
  • PARI
    q=vector(100); q[1]=q[6]=1; q[2]=q[3]=q[8]=2; q[4]=q[7]=7; q[5]=5; for(n=9, #q, q[n]=q[n-q[n-1]]+q[n-q[n-3]]); q
    
  • PARI
    Vec(x*(1 + x)*(1 + x + x^2 + 6*x^3 - x^4 + 2*x^5 + 5*x^6 - 3*x^7 + 12*x^8 - 9*x^9 + 20*x^10 - 17*x^11 + 23*x^12 - 19*x^13 + 33*x^14 - 28*x^15 + 37*x^16 - 21*x^17 + 27*x^18 - 14*x^19 + 16*x^20 - 10*x^21 + 4*x^22 + 7*x^23 + 12*x^24 - 5*x^25 + 3*x^26 + 7*x^27 - 10*x^28 + 18*x^29 - 21*x^30 + 15*x^31 - 19*x^32 + 24*x^33 - 29*x^34 + 20*x^35 - 17*x^36 + 11*x^37 - 6*x^38 + 2*x^39 - 10*x^40 + 9*x^41 - 6*x^42 + 5*x^43) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18)^2) + O(x^90)) \\ Colin Barker, Aug 11 2019
    

Formula

For k >= 1:
a(19*k-11) = 2,
a(19*k-10) = 19*k-10,
a(19*k-9) = 3,
a(19*k-8) = 19*k-8,
a(19*k-7) = 3,
a(19*k-6) = 6,
a(19*k-5) = 4,
a(19*k-4) = 19*k-5,
a(19*k-3) = 5,
a(19*k-2) = 9,
a(19*k-1) = 19*k-3,
a(19*k) = 6,
a(19*k+1) = 19*k-4,
a(19*k+2) = 6,
a(19*k+3) = 10,
a(19*k+4) = 8,
a(19*k+5) = a(19*k+6) = a(19*k+7) = 19*k+2.
From Colin Barker, Aug 08 2019: (Start)
G.f.: x*(1 + x)*(1 + x + x^2 + 6*x^3 - x^4 + 2*x^5 + 5*x^6 - 3*x^7 + 12*x^8 - 9*x^9 + 20*x^10 - 17*x^11 + 23*x^12 - 19*x^13 + 33*x^14 - 28*x^15 + 37*x^16 - 21*x^17 + 27*x^18 - 14*x^19 + 16*x^20 - 10*x^21 + 4*x^22 + 7*x^23 + 12*x^24 - 5*x^25 + 3*x^26 + 7*x^27 - 10*x^28 + 18*x^29 - 21*x^30 + 15*x^31 - 19*x^32 + 24*x^33 - 29*x^34 + 20*x^35 - 17*x^36 + 11*x^37 - 6*x^38 + 2*x^39 - 10*x^40 + 9*x^41 - 6*x^42 + 5*x^43) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18)^2).
a(n) = 2*a(n-19) - a(n-38) for n > 45.
(End)

A309636 a(1) = 3, a(2) = 1, a(3) = 4, a(4) = 2, a(5) = 5; a(6) = 3; a(n) = a(n-a(n-1)) + a(n-a(n-4)) for n > 6.

Original entry on oeis.org

3, 1, 4, 2, 5, 3, 6, 4, 7, 10, 8, 6, 9, 7, 10, 13, 6, 14, 12, 10, 18, 6, 14, 17, 10, 23, 11, 14, 22, 10, 28, 16, 14, 27, 10, 33, 16, 14, 32, 10, 38, 16, 19, 37, 10, 43, 16, 24, 42, 10, 48, 16, 24, 47, 10, 53, 16, 24, 52, 10, 58, 16, 24, 57, 10, 63, 21, 24, 62, 10, 68, 26, 24, 67, 10
Offset: 1

Views

Author

Altug Alkan and Nathan Fox, Aug 10 2019

Keywords

Comments

A well-defined quasi-periodic solution for Hofstadter V recurrence (a(n) = a(n-a(n-1)) + a(n-a(n-4))).

Crossrefs

Programs

  • Magma
    I:=[3,1,4,2,5,3]; [n le 6 select I[n] else  Self(n-Self(n-1)) + Self(n-Self(n-4)): n in [1..80]]; // Marius A. Burtea, Aug 11 2019
  • Mathematica
    Nest[Append[#, #[[-#[[-1]] ]] + #[[-#[[-4]] ]]] &, {3, 1, 4, 2, 5, 3}, 69] (* Michael De Vlieger, May 08 2020 *)
  • PARI
    q=vector(100); q[1]=3; q[2]=1; q[3]=4; q[4]=2; q[5]=5; q[6]=3; for(n=7, #q, q[n] = q[n-q[n-1]] + q[n-q[n-4]]); q
    

Formula

For k > 1:
a(5*k) = 10,
a(5*k+1) = 5*k-2,
a(5*k+2) = 5*(floor((sqrt(2*k-1)-1)/2) + floor((sqrt(2*k-3)-1)/2)) + 6,
a(5*k+3) = 5*(floor(sqrt(k/2)) + floor(sqrt((k-1)/2))) + 4,
a(5*k+4) = 5*k-3.
Also, a(5*k+2) = 5*f(k)+1 and a(5*k+3) = 5*g(k)-1 where f(k) = g(k-g(k-1)) and g(k) = f(k-f(k))+2 with f(1) = g(1) = 1, g(2) = 2.

A309650 a(1) = 3, a(2) = 1, a(3) = 4, a(4) = 2; a(n) = a(n-a(n-2)) + a(n-a(n-3)) for n > 4.

Original entry on oeis.org

3, 1, 4, 2, 5, 3, 6, 9, 7, 5, 3, 11, 14, 7, 5, 8, 16, 19, 7, 5, 8, 21, 24, 12, 5, 8, 26, 29, 12, 5, 8, 31, 34, 12, 5, 13, 36, 39, 12, 5, 13, 41, 44, 12, 5, 13, 46, 49, 17, 5, 13, 51, 54, 17, 5, 13, 56, 59, 17, 5, 13, 61, 64, 17, 5, 18, 66, 69, 17, 5, 18, 71, 74, 17, 5, 18, 76, 79, 17, 5, 18, 81, 84, 22, 5
Offset: 1

Views

Author

Altug Alkan and Nathan Fox, Aug 11 2019

Keywords

Comments

A well-defined quasi-periodic solution for recurrence (a(n) = a(n-a(n-2)) + a(n-a(n-3))).

Crossrefs

Programs

  • Magma
    I:=[3,1,4,2]; [n le 4 select I[n] else  Self(n-Self(n-2)) + Self(n-Self(n-3)): n in [1..90]]; // Marius A. Burtea, Aug 11 2019
  • Mathematica
    Nest[Append[#, #[[-#[[-2]] ]] + #[[-#[[-3]] ]]] &, {3, 1, 4, 2}, 81] (* Michael De Vlieger, May 08 2020 *)
  • PARI
    q=vector(100); q[1]=3; q[2]=1; q[3]=4; q[4]=2; for(n=5, #q, q[n] = q[n-q[n-2]] + q[n-q[n-3]]); q
    

Formula

For k >= 1:
a(5*k) = 5,
a(5*k+1) = 5*floor(sqrt(k)+1/2)-2,
a(5*k+2) = 5*k+1,
a(5*k+3) = 5*k+4,
a(5*k+4) = 5*floor(sqrt(k))+2.
Showing 1-6 of 6 results.