cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309516 Number of odd parts in the partitions of n into 4 parts.

Original entry on oeis.org

0, 0, 0, 0, 4, 3, 6, 7, 12, 14, 22, 25, 36, 40, 52, 59, 76, 85, 104, 116, 140, 154, 182, 200, 232, 254, 290, 316, 360, 389, 436, 471, 524, 564, 624, 669, 736, 786, 858, 915, 996, 1059, 1146, 1216, 1312, 1388, 1492, 1576, 1688, 1780, 1900, 2000, 2132, 2239
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 05 2019

Keywords

Examples

			Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
                                                         1+1+1+9
                                                         1+1+2+8
                                                         1+1+3+7
                                                         1+1+4+6
                                             1+1+1+8     1+1+5+5
                                             1+1+2+7     1+2+2+7
                                 1+1+1+7     1+1+3+6     1+2+3+6
                                 1+1+2+6     1+1+4+5     1+2+4+5
                                 1+1+3+5     1+2+2+6     1+3+3+5
                     1+1+1+6     1+1+4+4     1+2+3+5     1+3+4+4
         1+1+1+5     1+1+2+5     1+2+2+5     1+2+4+4     2+2+2+6
         1+1+2+4     1+1+3+4     1+2+3+4     1+3+3+4     2+2+3+5
         1+1+3+3     1+2+2+4     1+3+3+3     2+2+2+5     2+2+4+4
         1+2+2+3     1+2+3+3     2+2+2+4     2+2+3+4     2+3+3+4
         2+2+2+2     2+2+2+3     2+2+3+3     2+3+3+3     3+3+3+3
--------------------------------------------------------------------------
  n  |      8           9          10          11          12        ...
--------------------------------------------------------------------------
a(n) |     12          14          22          25          36        ...
--------------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 07 2019
		

Programs

  • Mathematica
    Table[Sum[Sum[Sum[(Mod[i, 2] + Mod[j, 2] + Mod[k, 2] + Mod[n - i - j - k, 2]), {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 80}]
    Table[Count[Flatten[IntegerPartitions[n,{4}]],?OddQ],{n,0,60}] (* _Harvey P. Dale, Dec 30 2024 *)

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} ((i mod 2) + (j mod 2) + (k mod 2) + ((n-i-j-k) mod 2)).
Conjectures from Colin Barker, Aug 06 2019: (Start)
G.f.: x^4*(4 - 5*x + 4*x^2 - 2*x^3 + 4*x^4 - 3*x^5 + 2*x^6) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 + x^4)).
a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + 2*a(n-8) - 2*a(n-9) + a(n-10) - a(n-14) + 2*a(n-15) - a(n-16) for n>15.
(End)