cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A263235 Number of triangular number parts in all partitions of n.

Original entry on oeis.org

0, 1, 2, 5, 8, 14, 24, 37, 56, 85, 124, 178, 254, 354, 489, 671, 907, 1217, 1624, 2144, 2815, 3675, 4764, 6142, 7885, 10062, 12788, 16183, 20391, 25590, 32013, 39883, 49536, 61326, 75688, 93129, 114296, 139856, 170718, 207857, 252476, 305938, 369946, 446314, 537379
Offset: 0

Views

Author

Emeric Deutsch, Nov 12 2015

Keywords

Comments

a(n) = Sum_{k=0..n} k*A263234(n,k).

Examples

			a(4) = 8 because the partitions of 4 are  [4], [3',1'], [2,2], [2,1',1'], and [1',1',1',1'], where the triangular number parts are marked.
		

Crossrefs

Programs

  • Maple
    h:= proc (i) options operator, arrow: (1/2)*i*(i+1) end proc: g := (sum(x^h(i)/(1-x^h(i)), i = 1..100))/(product(1-x^i, i = 1..100)): hser:= series(g, x = 0, 55): seq(coeff(hser, x, n), n = 0..50);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, 0, b(n, i-1) +`if`(i>n, 0, (p-> p+
          `if`(issqr(8*i+1), [0, p[1]], 0))(b(n-i, i)))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..60);  # Alois P. Heinz, Nov 13 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, 0, b[n, i-1] + If[i>n, 0, Function[p, p + If[IntegerQ@Sqrt[8*i+1], {0, p[[1]]}, 0]][b[n-i, i]]]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 08 2017, after Alois P. Heinz *)

Formula

G.f.: Sum_{i>0} x^h(i)/(1-x^h(i)) / Product_{i>0} 1-x^i, where h(i) = i*(i+1)/2.
Showing 1-1 of 1 results.