cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309537 Total number of Fibonacci parts in all compositions of n.

Original entry on oeis.org

0, 1, 3, 8, 19, 46, 106, 241, 541, 1198, 2629, 5724, 12380, 26625, 56978, 121413, 257740, 545308, 1150272, 2419856, 5078336, 10633921, 22222338, 46353669, 96525324, 200686620, 416645184, 863834256, 1788756288, 3699688128, 7643727360, 15776156928, 32529718272
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; add(a(n-j)+`if`((t->issqr(t+4)
          or issqr(t-4))(5*j^2), ceil(2^(n-j-1)), 0), j=1..n)
        end:
    seq(a(n), n=0..33);
  • Mathematica
    a[n_] := a[n] = Sum[a[n - j] + With[{t = 5 j^2}, If[IntegerQ@Sqrt[t + 4] || IntegerQ@Sqrt[t - 4], Ceiling[2^(n - j - 1)], 0]], {j, 1, n}];
    a /@ Range[0, 33] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)

Formula

G.f.: Sum_{k>=2} x^Fibonacci(k)*(1-x)^2/(1-2*x)^2.
a(n) ~ c * 2^n * n, where c = 0.22756969930196647294851075611776578612085598114... - Vaclav Kotesovec, Aug 18 2019
c = A124091/4 - 3/8. - Vaclav Kotesovec, Mar 17 2024