A309537 Total number of Fibonacci parts in all compositions of n.
0, 1, 3, 8, 19, 46, 106, 241, 541, 1198, 2629, 5724, 12380, 26625, 56978, 121413, 257740, 545308, 1150272, 2419856, 5078336, 10633921, 22222338, 46353669, 96525324, 200686620, 416645184, 863834256, 1788756288, 3699688128, 7643727360, 15776156928, 32529718272
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3312
Programs
-
Maple
a:= proc(n) option remember; add(a(n-j)+`if`((t->issqr(t+4) or issqr(t-4))(5*j^2), ceil(2^(n-j-1)), 0), j=1..n) end: seq(a(n), n=0..33);
-
Mathematica
a[n_] := a[n] = Sum[a[n - j] + With[{t = 5 j^2}, If[IntegerQ@Sqrt[t + 4] || IntegerQ@Sqrt[t - 4], Ceiling[2^(n - j - 1)], 0]], {j, 1, n}]; a /@ Range[0, 33] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)
Formula
G.f.: Sum_{k>=2} x^Fibonacci(k)*(1-x)^2/(1-2*x)^2.
a(n) ~ c * 2^n * n, where c = 0.22756969930196647294851075611776578612085598114... - Vaclav Kotesovec, Aug 18 2019
c = A124091/4 - 3/8. - Vaclav Kotesovec, Mar 17 2024