A309541 Representable positive integers n that are not the inverse of their inverse in binary64 (double precision) IEEE 754 floating-point arithmetic (Version where 1 and n*(1/n) are unequal).
49, 98, 103, 107, 161, 187, 196, 197, 206, 214, 237, 239, 249, 253, 322, 347, 374, 389, 392, 394, 412, 417, 425, 428, 443, 474, 478, 479, 491, 498, 499, 501, 503, 506, 509, 561, 569, 644, 685, 691, 694, 725, 729, 735, 737, 748, 753, 765, 778, 779, 784, 788, 789, 797, 809, 817, 823, 824, 829, 833, 834, 837, 841, 849, 850
Offset: 1
Links
- Andrey Zabolotskiy, Table of n, a(n) for n = 1..10000
- Efstratios Gallopoulos, Scientific Computation I, five terms provided (in Greek) [broken link]
- Mark, comment on blog post "Rundungsfehler im Flash Player?", eight terms (in German)
- koDoz, comment in thread "Welche Grenzwerte gelten für Zahlen, Strings usw?", nine terms (in German)
Crossrefs
See A275419 for the n != 1/(1/n) version.
Programs
-
Fortran
doubleprecision one, r integer i parameter (one=1.0D0) do 10 i = 1, 500 R = one / dble(i) if ( R * dble(i) .ne. one) write (*,1000) i 1000 format (i0) 10 continue end C Hugo Pfoertner, Jan 18 2024