cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Adam M. Scherlis

Adam M. Scherlis's wiki page.

Adam M. Scherlis has authored 3 sequences.

A376922 Variance of n-th power of a standard normal random variable.

Original entry on oeis.org

1, 2, 15, 96, 945, 10170, 135135, 2016000, 34459425, 653836050, 13749310575, 316126087200, 7905853580625, 213439785208650, 6190283353629375, 191894675132160000, 6332659870762850625, 221641908024728441250, 8200794532637891559375, 319830558102716120460000
Offset: 1

Author

Adam M. Scherlis, Oct 10 2024

Keywords

Comments

The variance of the n-th sample moment is exactly a(n) / k for sample size k.
For a non-standard normal r.v. X ~ N(0, sigma^2), Var(X^n) = a(n) sigma^(2n).

Examples

			If Z ~ N(0, 1), then Var(Z) = 1, Var(Z^2) = 2, Var(Z^3) = 15, etc.
		

References

  • M. G. Kendall and A. Stuart, The Advanced Theory of Statistics Volume 1, Charles Griffin & Company, 1963, page 229.

Crossrefs

Formula

a(n) = M(2n) - M(n)^2, where M(n) = A123023(n) are the moments of N(0, 1).

A370459 Number of unicursal stars with n vertices.

Original entry on oeis.org

0, 0, 1, 1, 5, 19, 112, 828, 7441, 76579, 871225, 10809051, 144730446, 2079635889, 31912025537, 520913578812, 9013780062785, 164829273635749, 3176388519597555, 64343477504391475, 1366925655386979893, 30390554390984325019, 705740995420852895453
Offset: 3

Author

Adam M. Scherlis, Feb 19 2024

Keywords

Comments

A unicursal star is a closed loop formed by diagonals of a regular n-gon.
These are Hamiltonian cycles on the graph complement of the n-cycle.
Allowing polygon diagonals, but not sides, is equivalent to requiring every edge to cross at least one other edge.
These are counted up to rotation and reflection, i.e., modulo dihedral symmetry of the n-gon.
Inspired by a unicursal dodecagram drawn by Gordon FitzGerald (see links).

Examples

			For n=5, there is only the regular pentagram {5/2}.
For n=6, there is only the unicursal hexagram.
For n=7, in addition to the two regular heptagrams {7/2} and {7/3}, there are three nontrivial unicursal heptagrams represented by:
 (0, 2, 4, 1, 6, 3, 5, 0)
 (0, 2, 5, 1, 3, 6, 4, 0)
 (0, 2, 5, 1, 4, 6, 3, 0).
		

Crossrefs

Cf. A000940 (polygon sides allowed).
Cf. A055684 (cases with dihedral symmetry only).
Cf. A002816 (rotations and reflections counted separately).
Cf. A231091 (up to rotations only), A370769 (achiral).

Programs

  • PARI
    \\ Requires a370068 from A370068.
    Ro(n)=-(-1)^n + subst(serlaplace(polcoef(((1 - x)^2)/(2*(1 + x)*(1 + (1 - 2*y)*x + 2*y*x^2)) + O(x*x^n), n)), y, 1)
    Re(n)=subst(serlaplace(polcoef((1 - x - 2*x^2)/(4*(1 + (1 - 2*y)*x + 2*y*x^2)) + O(x*x^n), n)), y, 1)
    a(n)={if(n<3, 0, (if(n%2, 2*Ro(n\2), Re(n/2)) + a370068(n))/4)} \\ Andrew Howroyd, Mar 01 2024

Formula

a(n) = (A231091(n) + A370769(n))/2. - Andrew Howroyd, Mar 06 2024

Extensions

a(14) onwards from Andrew Howroyd, Feb 26 2024

A309541 Representable positive integers n that are not the inverse of their inverse in binary64 (double precision) IEEE 754 floating-point arithmetic (Version where 1 and n*(1/n) are unequal).

Original entry on oeis.org

49, 98, 103, 107, 161, 187, 196, 197, 206, 214, 237, 239, 249, 253, 322, 347, 374, 389, 392, 394, 412, 417, 425, 428, 443, 474, 478, 479, 491, 498, 499, 501, 503, 506, 509, 561, 569, 644, 685, 691, 694, 725, 729, 735, 737, 748, 753, 765, 778, 779, 784, 788, 789, 797, 809, 817, 823, 824, 829, 833, 834, 837, 841, 849, 850
Offset: 1

Author

Adam M. Scherlis, Aug 06 2019

Keywords

Crossrefs

See A275419 for the n != 1/(1/n) version.

Programs

  • Fortran
    doubleprecision one, r
          integer i
          parameter (one=1.0D0)
          do 10 i = 1, 500
          R = one / dble(i)
          if ( R * dble(i) .ne. one) write (*,1000) i
    1000  format (i0)
    10    continue
          end
    C Hugo Pfoertner, Jan 18 2024