cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309543 Number of odd parts in the partitions of n into 5 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 5, 4, 8, 10, 17, 20, 32, 38, 56, 66, 90, 104, 137, 158, 200, 230, 285, 324, 393, 444, 530, 594, 697, 778, 905, 1004, 1153, 1274, 1450, 1594, 1802, 1972, 2213, 2414, 2690, 2924, 3242, 3512, 3873, 4184, 4595, 4948, 5410, 5812, 6330, 6784, 7362
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 06 2019

Keywords

Examples

			The partitions of n into 5 parts for n = 10, 11, ..
                                                       1+1+1+1+10
                                                        1+1+1+2+9
                                                        1+1+1+3+8
                                                        1+1+1+4+7
                                                        1+1+1+5+6
                                            1+1+1+1+9   1+1+2+2+8
                                            1+1+1+2+8   1+1+2+3+7
                                            1+1+1+3+7   1+1+2+4+6
                                            1+1+1+4+6   1+1+2+5+5
                                            1+1+1+5+5   1+1+3+3+6
                                1+1+1+1+8   1+1+2+2+7   1+1+3+4+5
                                1+1+1+2+7   1+1+2+3+6   1+1+4+4+4
                                1+1+1+3+6   1+1+2+4+5   1+2+2+2+7
                    1+1+1+1+7   1+1+1+4+5   1+1+3+3+5   1+2+2+3+6
                    1+1+1+2+6   1+1+2+2+6   1+1+3+4+4   1+2+2+4+5
                    1+1+1+3+5   1+1+2+3+5   1+2+2+2+6   1+2+3+3+5
        1+1+1+1+6   1+1+1+4+4   1+1+2+4+4   1+2+2+3+5   1+2+3+4+4
        1+1+1+2+5   1+1+2+2+5   1+1+3+3+4   1+2+2+4+4   1+3+3+3+4
        1+1+1+3+4   1+1+2+3+4   1+2+2+2+5   1+2+3+3+4   2+2+2+2+6
        1+1+2+2+4   1+1+3+3+3   1+2+2+3+4   1+3+3+3+3   2+2+2+3+5
        1+1+2+3+3   1+2+2+2+4   1+2+3+3+3   2+2+2+2+5   2+2+2+4+4
        1+2+2+2+3   1+2+2+3+3   2+2+2+2+4   2+2+2+3+4   2+2+3+3+4
        2+2+2+2+2   2+2+2+2+3   2+2+2+3+3   2+2+3+3+3   2+3+3+3+3
--------------------------------------------------------------------------
  n  |     10          11          12          13          14        ...
--------------------------------------------------------------------------
a(n) |     20          32          38          56          66        ...
--------------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 12 2019
		

Crossrefs

Cf. A309516.

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Mod[i, 2] + Mod[j, 2] + Mod[k, 2] + Mod[l, 2] + Mod[n - i - j - k - l, 2], {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 50}]

Formula

a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-1)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} ((i mod 2) + (j mod 2) + (k mod 2) + (l mod 2) + ((n-i-j-k-l) mod 2)).
G.f.: -x^5*(2*x^11-x^10+2*x^8+4*x^6-4*x^5+5*x^4-2*x^3+5*x^2-6*x+5) / ((x^2+1) *(x^2+x+1) *(x^2-x+1) *(x^4+x^3+x^2+x+1) *(x^4-x^3+x^2-x+1) *(x^4+1) *(x+1)^3 *(x-1)^5). - Alois P. Heinz, Aug 07 2019