A309601 Digits of the 10-adic integer (53/9)^(1/3).
3, 7, 3, 8, 6, 7, 0, 5, 3, 0, 8, 5, 3, 4, 8, 1, 3, 0, 9, 0, 3, 2, 9, 2, 3, 6, 3, 2, 4, 3, 5, 1, 5, 2, 9, 8, 0, 7, 6, 0, 3, 9, 9, 4, 2, 5, 3, 0, 3, 2, 0, 3, 2, 8, 2, 8, 7, 8, 3, 1, 0, 0, 4, 6, 4, 1, 8, 9, 4, 8, 5, 3, 5, 3, 7, 3, 1, 6, 7, 9, 1, 1, 8, 5, 0, 2, 5, 7, 6, 3, 8, 9, 4, 2, 7, 3, 0, 3, 6, 6
Offset: 0
Examples
3^3 == 7 (mod 10). 73^3 == 17 (mod 10^2). 373^3 == 117 (mod 10^3). 8373^3 == 1117 (mod 10^4). 68373^3 == 11117 (mod 10^5). 768373^3 == 111117 (mod 10^6).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A309600.
Programs
Formula
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 - 53) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.