A309644 Digits of the 10-adic integer (-43/9)^(1/3).
7, 9, 3, 1, 4, 9, 2, 8, 3, 0, 0, 0, 8, 2, 6, 1, 4, 3, 7, 0, 1, 8, 9, 0, 3, 1, 6, 9, 4, 8, 4, 8, 4, 2, 2, 8, 8, 4, 0, 0, 0, 0, 8, 7, 0, 0, 7, 8, 9, 6, 3, 0, 0, 4, 0, 5, 9, 4, 6, 9, 6, 9, 2, 0, 1, 8, 5, 3, 2, 0, 1, 2, 0, 5, 7, 9, 3, 3, 9, 4, 5, 6, 2, 0, 3, 1, 3, 5, 1, 4, 0, 5, 8, 2, 5, 7, 2, 6, 4, 9
Offset: 0
Examples
7^3 == 3 (mod 10). 97^3 == 73 (mod 10^2). 397^3 == 773 (mod 10^3). 1397^3 == 7773 (mod 10^4). 41397^3 == 77773 (mod 10^5). 941397^3 == 777773 (mod 10^6).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Programs
Formula
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 + 43) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.