cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309660 Number of odd parts in the partitions of n into 10 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 9, 18, 25, 42, 55, 86, 111, 162, 210, 290, 371, 504, 635, 834, 1048, 1350, 1673, 2122, 2605, 3254, 3961, 4876, 5890, 7184, 8607, 10384, 12364, 14792, 17489, 20766, 24404, 28770, 33624, 39376, 45776, 53308, 61656, 71396
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 11 2019

Keywords

Programs

Formula

a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} (r mod 2) + (q mod 2) + (p mod 2) + (o mod 2) + (m mod 2) + (l mod 2) + (k mod 2) + (j mod 2) + (i mod 2) + ((n-i-j-k-l-m-o-p-q-r) mod 2).