cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A309260 Number of ways of placing 2n-1 nonattacking rooks on a hexagonal board with edge-length n in Glinski's hexagonal chess, inequivalent up to rotations and reflections of the board.

Original entry on oeis.org

1, 1, 1, 5, 29, 224, 3012, 55200, 1259794, 35488536, 1200819600
Offset: 1

Views

Author

Sangeet Paul, Jul 19 2019

Keywords

Comments

A rook in Glinski's hexagonal chess can move to any cell along the perpendicular bisector of any of the 6 edges of the hexagonal cell it's on (analogous to a rook in orthodox chess which can move to any cell along the perpendicular bisector of any of the 4 edges of the square cell it's on).

Examples

			a(1) = 1
.
  o
.
a(2) = 1
.
   o .
  . . o
   o .
.
a(3) = 1
.
    o . .
   . . o .
  . . . . o
   o . . .
    . o .
.
a(4) = 5
.
     o . . .        o . . .        o . . .        . o . .        . o . .
    . . o . .      . . o . .      . . . o .      o . . . .      . . . . o
   . . . . o .    . . . . . o    . . . . . o    . . . . . o    o . . . . .
  . . . . . . o  . o . . . . .  . . o . . . .  . . . o . . .  . . . o . . .
   o . . . . .    . . . . . o    o . . . . .    . . . . . o    . . . . . o
    . o . . .      . . o . .      . . . . o      o . . . .      o . . . .
     . . o .        o . . .        . o . .        . o . .        . . o .
.
		

Crossrefs

Extensions

a(1)-a(7) confirmed by Vaclav Kotesovec, Aug 16 2019
a(8) from Alain Brobecker, Dec 10 2021
a(8) confirmed by Vaclav Kotesovec, Dec 12 2021
a(9) from Alain Brobecker, Dec 13 2021
a(9) confirmed by Vaclav Kotesovec, Dec 18 2021
a(10)-a(11) from Bert Dobbelaere, Oct 24 2022

A309746 Number of ways of placing 2*n-1 nonattacking queens on a hexagonal board with edge-length n in Glinski's hexagonal chess.

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 0, 6, 0, 36, 0, 72, 332, 1596, 6972
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 15 2019

Keywords

Comments

Conjecture: for n >= 12 is a(n) > 0. Proved for n <= 20. - Vaclav Kotesovec, Sep 06 2019

Crossrefs

Extensions

a(15) from Vaclav Kotesovec, Aug 28 2019

A309675 a(n) = 4^n^2 + n!.

Original entry on oeis.org

2, 5, 258, 262150, 4294967320, 1125899906842744, 4722366482869645214416, 316912650057057350374175806384, 340282366920938463463374607431768251776, 5846006549323611672814739330865132078623730534784, 1606938044258990275541962092341162602522202993782792838930176
Offset: 0

Views

Author

Andrew M. Kamal, Aug 11 2019

Keywords

Examples

			a(1) = 5 since 1^1=1, (4^1) + 1! = 5;
a(2) = 4^2^2 = 4^4 = 256, 256 + 2! = 256 + 2*1 = 258.
		

Crossrefs

Showing 1-3 of 3 results.