A309682 G.f.: C(x)*C(2*x^2)*C(3*x^3)*..., where C(x) is the g.f. for A000108.
1, 1, 4, 10, 33, 81, 282, 762, 2599, 7979, 27343, 89371, 315256, 1078498, 3857048, 13651786, 49475282, 178736186, 655247192, 2401663838, 8883371016, 32906649488, 122619768860, 457836275272, 1716620421629, 6449729802639, 24308647131627, 91800114425437
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1669
Programs
-
Maple
C:= proc(n) option remember; binomial(2*n, n)/(n+1) end: b:= proc(n, i) option remember; `if`(n=0 or i=1, C(n), add(C(j)*i^j*b(n-i*j, i-1), j=0..n/i)) end: a:= n-> b(n$2): seq(a(n), n=0..30); # Alois P. Heinz, Aug 23 2019
-
Mathematica
nmax = 30; CoefficientList[Series[Product[Sum[CatalanNumber[k]*j^k*x^(j*k), {k, 0, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x] nmax = 30; CoefficientList[Series[Product[(1 - Sqrt[1 - 4*k*x^k])/(2*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
a(n) ~ c * 4^n / n^(3/2), where c = 1/(2*sqrt(Pi)) * Product_{k>=1} (2^k*(2^(k-1) - sqrt(4^(k-1) - k))/k) = 0.711438694828613555153724789...