cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A322204 G.f.: exp( Sum_{n>=1} A322203(n)*x^n/n ), where A322203(n) is the coefficient of x^n*y^n/n in Sum_{n>=1} -log(1 - (x^n + y^n)).

Original entry on oeis.org

1, 1, 3, 7, 20, 54, 168, 518, 1702, 5672, 19413, 67329, 236994, 842362, 3022320, 10924142, 39749219, 145457241, 534996370, 1976582432, 7332199623, 27298096431, 101968071485, 382033462335, 1435270419582, 5405847465772, 20408264704999, 77211968620103, 292706146651697, 1111698968597495, 4229571286335997, 16117966287887641, 61515492682026560, 235114188287816030, 899821838980825557, 3448133313264656915
Offset: 0

Views

Author

Paul D. Hanna, Nov 30 2018

Keywords

Comments

Conjecture: Euler transform of A003239. - Georg Fischer, Dec 10 2020

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 20*x^4 + 54*x^5 + 168*x^6 + 518*x^7 + 1702*x^8 + 5672*x^9 + 19413*x^10 + 67329*x^11 + 236994*x^12 + ...
such that
log( A(x) ) = x + 5*x^2/2 + 13*x^3/3 + 45*x^4/4 + 131*x^5/5 + 497*x^6/6 + 1723*x^7/7 + 6525*x^8/8 + 24349*x^9/9 + 92655*x^10/10 + ... + A322203(n)*x^n/n + ...
Also,
A(x)^2  = 1 + 2*x + 7*x^2 + 20*x^3 + 63*x^4 + 190*x^5 + 613*x^6 + 1976*x^7 + 6604*x^8 + 22368*x^9 + 77270*x^10 + 270208*x^11 + 956780*x^12 + ... + A322202(n)*x^n + ...
		

Crossrefs

Programs

  • Maple
    C:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, C(n),
          add((t-> b(t, min(t, i-1)))(n-i*j)*C(j), j=0..n/i))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..35);  # Alois P. Heinz, Aug 24 2019
  • Mathematica
    nmax = 25; CoefficientList[Series[Product[Sum[CatalanNumber[k]*x^(j*k), {k, 0, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 12 2019 *)
    nmax = 25; CoefficientList[Series[Product[(1 - Sqrt[1 - 4*x^k])/(2*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 12 2019 *)
  • PARI
    {L = sum(n=1,61, -log(1 - (x^n + y^n) +O(x^61) +O(y^61)) );}
    {A322203(n) = polcoeff( n*polcoeff( L,n,x),n,y)}
    {a(n) = polcoeff( exp( sum(m=1,n, A322203(m)*x^m/m ) +x*O(x^n) ),n) }
    for(n=0,35, print1( a(n),", ") )

Formula

a(n) ~ c * 4^n / n^(3/2), where c = 1/sqrt(Pi) * Product_{j>=1} (2^(j+1) * (2^j - sqrt(4^j - 1))) = 0.6176761088360252844346512553859... - Vaclav Kotesovec, Jun 18 2019, updated Aug 12 2019
G.f.: Product_{j>=1} c(x^j), where c(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. of A000108. - Alois P. Heinz, Aug 24 2019
Showing 1-1 of 1 results.