A322203
a(n) = coefficient of x^n*y^n/n in Sum_{n>=1} -log(1 - (x^n + y^n)), for n >= 1.
Original entry on oeis.org
1, 5, 13, 45, 131, 497, 1723, 6525, 24349, 92655, 352727, 1353177, 5200313, 20061767, 77559203, 300553245, 1166803127, 4537617761, 17672631919, 68923449895, 269128942459, 1052050187347, 4116715363823, 16123804567209, 63205303219531, 247959276874717, 973469712897103, 3824345340503999, 15033633249770549, 59132290937828607, 232714176627630575, 916312071072401757
Offset: 1
G.f.: L(x) = x + 5*x^2/2 + 13*x^3/3 + 45*x^4/4 + 131*x^5/5 + 497*x^6/6 + 1723*x^7/7 + 6525*x^8/8 + 24349*x^9/9 + 92655*x^10/10 + 352727*x^11/11 + 1353177*x^12/12 + ...
such that
exp( L(x) ) = 1 + x + 3*x^2 + 7*x^3 + 20*x^4 + 54*x^5 + 168*x^6 + 518*x^7 + 1702*x^8 + 5672*x^9 + 19413*x^10 + 67329*x^11 + ... + A322204(n)*x^n + ...
-
{L = sum(n=1,61, -log(1 - (x^n + y^n) +O(x^61) +O(y^61)) );}
{a(n) = polcoeff( n*polcoeff( L,n,x),n,y)}
for(n=1,35, print1( a(n),", ") )
A322202
G.f.: exp( Sum_{n>=1} A322201(n)*x^n/n ), where A322201(n) is the coefficient of x^n*y^n/(2*n) in Sum_{n>=1} -log(1 - (x^n + y^n)).
Original entry on oeis.org
1, 2, 7, 20, 63, 190, 613, 1976, 6604, 22368, 77270, 270208, 956780, 3419212, 12323226, 44723840, 163320766, 599601984, 2211844684, 8193734760, 30469278673, 113692852342, 425558528235, 1597428832560, 6011972255226, 22680620270712, 85754229105470, 324898592591960, 1233299357981416, 4689870496585016, 17863799895741982, 68149300647823612, 260364494604701847, 996086232267182566, 3815683108118138847, 14634441964549504036
Offset: 0
G.f.: A(x) = 1 + 2*x + 7*x^2 + 20*x^3 + 63*x^4 + 190*x^5 + 613*x^6 + 1976*x^7 + 6604*x^8 + 22368*x^9 + 77270*x^10 + 270208*x^11 + 956780*x^12 + ...
such that
log( A(x) ) = 2*x + 10*x^2/2 + 26*x^3/3 + 90*x^4/4 + 262*x^5/5 + 994*x^6/6 + 3446*x^7/7 + 13050*x^8/8 + 48698*x^9/9 + 185310*x^10/10 + ... + A322201(n)*x^n/n + ...
sqrt(A(x)) = 1 + x + 3*x^2 + 7*x^3 + 20*x^4 + 54*x^5 + 168*x^6 + 518*x^7 + 1702*x^8 + 5672*x^9 + 19413*x^10 + 67329*x^11 + 236994*x^12 + ... + A322204(n)*x^n + ...
-
nmax = 30; CoefficientList[Series[Product[Sum[CatalanNumber[k]*x^(j*k), {k, 0, nmax/j}]^2, {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 12 2020 *)
nmax = 30; CoefficientList[Series[Product[(1 - Sqrt[1 - 4*x^k])/(2*x^k), {k, 1, nmax}]^2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 12 2020 *)
-
{L = sum(n=1,61, -log(1 - (x^n + y^n) +O(x^61) +O(y^61)) );}
{A322201(n) = polcoeff( 2*n*polcoeff( L,n,x),n,y)}
{a(n) = polcoeff( exp( sum(m=1,n, A322201(m)*x^m/m ) +x*O(x^n) ),n) }
for(n=0,35, print1( a(n),", ") )
A327683
Expansion of Product_{k>0} (1+sqrt(1+4*x^k))/2.
Original entry on oeis.org
1, 1, 0, 4, -5, 17, -40, 144, -459, 1517, -5111, 17747, -62074, 219292, -782602, 2816664, -10205754, 37203230, -136360106, 502219652, -1857659296, 6897983144, -25704335380, 96090440940, -360265425619, 1354343161419, -5103948546609, 19278502980063, -72972099256954
Offset: 0
-
N:= 40:
P:= mul((1+sqrt(1+4*x^k))/2,k=1..N):
S:= series(P,x,N+1):
seq(coeff(S,x,j),j=0..N); # Robert Israel, Sep 22 2019
-
nmax = 30; CoefficientList[Series[Product[(1+Sqrt[1+4*x^k])/2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 22 2019 *)
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+sqrt(1+4*x^k))/2))
-
N=66; x='x+O('x^N); Vec(prod(i=1, N, 1-sum(j=1, N\i, (-1)^j*binomial(2*j-2, j-1)*x^(i*j)/j)))
A322188
G.f.: exp( Sum_{n>=1} A322187(n)*x^n/n ), where A322187(n) is the coefficient of x^n*y^n/n in log( Product_{n>=1} 1/(1 - x^(2*n-1) - y^(2*n-1)) ).
Original entry on oeis.org
1, 1, 2, 6, 15, 45, 140, 448, 1483, 5027, 17311, 60469, 213678, 762284, 2741864, 9932346, 36202666, 132677658, 488605698, 1807176452, 6710206574, 25003642942, 93468147306, 350425771854, 1317330452697, 4964398631867, 18751217069083, 70975750129731, 269180061675328, 1022750160098864, 3892577330120307, 14838784128136803, 56651259287153670, 216586672901518164, 829142137823283601, 3178107527615273349
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 15*x^4 + 45*x^5 + 140*x^6 + 448*x^7 + 1483*x^8 + 5027*x^9 + 17311*x^10 + 60469*x^11 + 213678*x^12 + ...
such that
log(A(x)) = x + 3*x^2/2 + 13*x^3/3 + 35*x^4/4 + 131*x^5/5 + 471*x^6/6 + 1723*x^7/7 + 6435*x^8/8 + 24349*x^9/9 + 92393*x^10/10 + 352727*x^11/11 + 1352183*x^12/12 + ... + A322187(n)*x^n/n + ...
RELATED SERIES.
A(x)^2 = 1 + 2*x + 5*x^2 + 16*x^3 + 46*x^4 + 144*x^5 + 466*x^6 + 1536*x^7 + 5187*x^8 + 17842*x^9 + 62209*x^10 + 219504*x^11 + 782272*x^12 + ...
-
N=35;
{L = sum(n=1, N+1, -log(1 - x^(2*n-1) - y^(2*n-1) +x*O(x^N) +y*O(y^N)) ); }
{A322187(n) = polcoeff( n*polcoeff( L, n, x), n, y)}
{a(n) = polcoeff( exp( sum(m=1, n, A322187(m)*x^m/m ) +x*O(x^n) ), n) }
for(n=0, N, print1( a(n), ", ") )
A322207
a(n) = coefficient of x^(3*n)*y^n/n in Sum_{n>=1} -log(1 - (x^n + y^n)).
Original entry on oeis.org
1, 9, 58, 473, 3881, 33786, 296017, 2630521, 23535994, 211922929, 1917334794, 17417202554, 158753389913, 1451183583033, 13298522310098, 122131739530937, 1123787895356429, 10358022488568858, 95615237915961119, 883829035976891713, 8179808679273553156, 75788358479315971850, 702916267465270526873, 6525429588311530420858, 60629817430084280273281
Offset: 1
G.f.: L(x) = x + 9*x^2/2 + 58*x^3/3 + 473*x^4/4 + 3881*x^5/5 + 33786*x^6/6 + 296017*x^7/7 + 2630521*x^8/8 + 23535994*x^9/9 + 211922929*x^10/10 + 1917334794*x^11/11 + 17417202554*x^12/12 + ...
such that
exp( L(x) ) = 1 + x + 5*x^2 + 24*x^3 + 150*x^4 + 1002*x^5 + 7296*x^6 + 55082*x^7 + 429803*x^8 + 3429141*x^9 + 27861573*x^10 + 229668027*x^11 + 1916090676*x^12 + ... + A322208(n)*x^n + ...
-
{L = sum(n=1,121, -log(1 - (x^n + y^n) +O(x^121) +O(y^121)) );}
{a(n) = polcoeff( n*polcoeff( L,3*n,x),n,y)}
for(n=1,40, print1( a(n),", ") )
A327682
Expansion of Product_{k>0} (-1+sqrt(1+4*x^k))/(2*x^k).
Original entry on oeis.org
1, -1, 1, -5, 14, -40, 122, -404, 1362, -4608, 15881, -55709, 197402, -705114, 2539282, -9210196, 33605471, -123262137, 454268676, -1681305246, 6246544735, -23288217459, 87096982499, -326680267261, 1228547420236, -4631474743422, 17499462106763, -66257720483935, 251356773101419
Offset: 0
-
m = 28; CoefficientList[Series[Product[(-1 + Sqrt[1 + 4*x^k])/(2*x^k), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 06 2021 *)
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, (-1+sqrt(1+4*x^k))/(2*x^k)))
-
N=66; x='x+O('x^N); Vec(prod(i=1, N, sum(j=0, N\i, (-1)^j*binomial(2*j, j)*x^(i*j)/(j+1))))
A309682
G.f.: C(x)*C(2*x^2)*C(3*x^3)*..., where C(x) is the g.f. for A000108.
Original entry on oeis.org
1, 1, 4, 10, 33, 81, 282, 762, 2599, 7979, 27343, 89371, 315256, 1078498, 3857048, 13651786, 49475282, 178736186, 655247192, 2401663838, 8883371016, 32906649488, 122619768860, 457836275272, 1716620421629, 6449729802639, 24308647131627, 91800114425437
Offset: 0
-
C:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
b:= proc(n, i) option remember; `if`(n=0 or i=1,
C(n), add(C(j)*i^j*b(n-i*j, i-1), j=0..n/i))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Aug 23 2019
-
nmax = 30; CoefficientList[Series[Product[Sum[CatalanNumber[k]*j^k*x^(j*k), {k, 0, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x]
nmax = 30; CoefficientList[Series[Product[(1 - Sqrt[1 - 4*k*x^k])/(2*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A309867
Expansion of Product_{k>0} (1+sqrt(1-4*x^k))/2.
Original entry on oeis.org
1, -1, -2, -2, -5, -9, -36, -104, -365, -1219, -4213, -14617, -51570, -183084, -656536, -2370066, -8613590, -31478538, -115632718, -426676244, -1580878746, -5878933054, -21936060630, -82100980070, -308146839623, -1159545407027, -4373730398473, -16533813947503
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[(1+Sqrt[1-4*x^k])/2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 06 2021 *)
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+sqrt(1-4*x^k))/2))
-
N=66; x='x+O('x^N); Vec(prod(i=1, N, 1-sum(j=1, N\i, binomial(2*j-2, j-1)*x^(i*j)/j)))
A322186
G.f.: exp( Sum_{n>=1} A322185(n)*x^n/n ), where A322185(n) = sigma(2*n) * binomial(2*n,n)/2.
Original entry on oeis.org
1, 3, 15, 76, 357, 1662, 8203, 36609, 169800, 788024, 3586350, 15948147, 73761986, 324147729, 1454796651, 6544916640, 28902107643, 126842754933, 567156315794, 2468434955040, 10893525305088, 47854663427104, 208582052412240, 905923236202737, 3975385018556868, 17200981327476354, 74619131550054048, 323976744392754994, 1400917964875907424, 6031485491299656747
Offset: 0
G.f.: A(x) = 1 + 3*x + 15*x^2 + 76*x^3 + 357*x^4 + 1662*x^5 + 8203*x^6 + 36609*x^7 + 169800*x^8 + 788024*x^9 + 3586350*x^10 + 15948147*x^11 + ...
such that
log(A(x)) = 3*x + 21*x^2/2 + 120*x^3/3 + 525*x^4/4 + 2268*x^5/5 + 12936*x^6/6 + 41184*x^7/7 + 199485*x^8/8 + 948090*x^9/9 + 3879876*x^10/10 + 12697776*x^11/11 + ... + A322185(n)*x^n/n + ...
RELATED SERIES.
A(x)^2 = 1 + 6*x + 39*x^2 + 242*x^3 + 1395*x^4 + 7746*x^5 + 42864*x^6 + 226560*x^7 + 1185417*x^8 + 6126642*x^9 + 31178598*x^10 + 156270312*x^11 + 780797727*x^12 + ...
where A(x)^2 = exp( Sum_{n>=1} sigma(2*n) * binomial(2*n,n) * x^n/n ).
-
{A322185(n) = sigma(2*n) * binomial(2*n,n)/2}
{a(n) = polcoeff( exp( sum(m=1, n, A322185(m)*x^m/m ) +x*O(x^n) ), n) }
for(n=0, 30, print1( a(n), ", ") )
A322206
G.f.: exp( Sum_{n>=1} A322205(n)*x^n/n ), where A322205(n) is the coefficient of x^(2*n)*y^n/n in Sum_{n>=1} -log(1 - (x^n + y^n)).
Original entry on oeis.org
1, 1, 4, 14, 63, 294, 1526, 8157, 45332, 257378, 1489539, 8744722, 51965701, 311915649, 1888382937, 11517313486, 70699038868, 436454255701, 2708000234769, 16877547822830, 105614312726477, 663314865710063, 4179789872458354, 26418030929753007, 167435388627981690, 1063892712455899336, 6775891814778961392, 43249097401730644817, 276606084622479837727, 1772391802339441687335, 11376702892986621823617
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 14*x^3 + 63*x^4 + 294*x^5 + 1526*x^6 + 8157*x^7 + 45332*x^8 + 257378*x^9 + 1489539*x^10 + 8744722*x^11 + 51965701*x^12 + ...
such that
log( A(x) ) = x + 7*x^2/2 + 31*x^3/3 + 179*x^4/4 + 1006*x^5/5 + 6265*x^6/6 + 38767*x^7/7 + 245515*x^8/8 + 1562368*x^9/9 + 10017042*x^10/10 + ... + A322205(n)*x^n/n + ...
RELATED SERIES.
A(x)^3 = 1 + 3*x + 15*x^2 + 67*x^3 + 333*x^4 + 1686*x^5 + 9031*x^6 + 49629*x^7 + 280467*x^8 + 1614932*x^9 + 9449961*x^10 + 56001366*x^11 + 335437797*x^12 + ...
-
{L = sum(n=1,81, -log(1 - (x^n + y^n) +O(x^81) +O(y^81)) );}
{A322205(n) = polcoeff( n*polcoeff( L,2*n,x),n,y)}
{a(n) = polcoeff( exp( sum(m=1,n, A322205(m)*x^m/m ) +x*O(x^n) ),n) }
for(n=0,40, print1( a(n),", ") )
Showing 1-10 of 10 results.
Comments