cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309694 Sum of the even parts appearing among the largest parts of the partitions of n into 3 parts.

Original entry on oeis.org

0, 0, 0, 0, 2, 2, 6, 4, 14, 14, 28, 24, 48, 44, 74, 68, 112, 106, 158, 144, 214, 206, 286, 268, 370, 352, 466, 444, 584, 562, 716, 680, 864, 838, 1038, 996, 1230, 1188, 1440, 1392, 1682, 1634, 1944, 1876, 2228, 2174, 2548, 2472, 2892, 2816, 3260, 3176, 3670
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 12 2019

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     0      2      2      6      4     14     14     28      ...
-----------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(n - i - j) * Mod[n - i - j - 1, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
    LinearRecurrence[{1, -1, 1, 1, -1, 3, -3, 2, -2, -2, 2, -3, 3, -1, 1, 1, -1, 1, -1}, {0, 0, 0, 0, 2, 2, 6, 4, 14, 14, 28, 24, 48, 44, 74, 68, 112, 106, 158}, 80]
  • PARI
    concat([0,0,0,0], Vec(2*x^4*(1 + 3*x^2 - x^3 + 6*x^4 - x^5 + 7*x^6 - x^7 + 6*x^8 - x^9 + 3*x^10 - x^11 + x^12) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2) + O(x^40))) \\ Colin Barker, Aug 23 2019

Formula

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (n-i-j) * ((n-i-j-1) mod 2).
From Colin Barker, Aug 23 2019: (Start)
G.f.: 2*x^4*(1 + 3*x^2 - x^3 + 6*x^4 - x^5 + 7*x^6 - x^7 + 6*x^8 - x^9 + 3*x^10 - x^11 + x^12) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = a(n-1) - a(n-2) + a(n-3) + a(n-4) - a(n-5) + 3*a(n-6) - 3*a(n-7) + 2*a(n-8) - 2*a(n-9) - 2*a(n-10) + 2*a(n-11) - 3*a(n-12) + 3*a(n-13) - a(n-14) + a(n-15) + a(n-16) - a(n-17) + a(n-18) - a(n-19) for n>18.
(End)