cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309730 Expansion of Sum_{k>=1} x^k * (1 - x^(3*k))/(1 - x^k)^4.

Original entry on oeis.org

1, 5, 11, 24, 32, 61, 65, 109, 120, 172, 167, 279, 236, 343, 358, 470, 410, 630, 515, 762, 706, 865, 761, 1193, 933, 1216, 1174, 1497, 1220, 1850, 1397, 1959, 1762, 2098, 1882, 2739, 2000, 2629, 2470, 3188, 2462, 3614, 2711, 3723, 3438, 3871, 3245, 4939, 3594, 4749, 4246, 5214
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 14 2019

Keywords

Comments

Inverse Moebius transform of centered triangular numbers (A005448).

Crossrefs

Programs

  • Mathematica
    nmax = 52; CoefficientList[Series[Sum[x^k (1 - x^(3 k))/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[3 (DivisorSigma[2, n] - DivisorSigma[1, n])/2 + DivisorSigma[0, n], {n, 1, 52}]
  • PARI
    a(n)={sumdiv(n, d, 3*d*(d-1)/2 + 1)} \\ Andrew Howroyd, Aug 14 2019
    
  • PARI
    a(n)={3*(sigma(n,2) - sigma(n))/2 + numdiv(n)} \\ Andrew Howroyd, Aug 14 2019

Formula

G.f.: Sum_{k>=1} (3*k*(k - 1)/2 + 1) * x^k/(1 - x^k).
a(n) = 3 * (sigma_2(n) - sigma_1(n))/2 + d(n).
From Amiram Eldar, Jan 02 2025: (Start)
Dirichlet g.f.: zeta(s) * (3 * zeta(s-2) - 3 * zeta(s-1) + 2 * zeta(s)) / 2.
Sum_{k=1..n} a(k) ~ (zeta(3)/2) * n^3. (End)