cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A309780 Even numbers m having the property that for every odd prime divisor p of m there exists a positive integer k < p-1, such that p-k|m-k.

Original entry on oeis.org

20, 28, 44, 50, 52, 68, 76, 80, 88, 92, 104, 110, 112, 116, 124, 136, 148, 152, 164, 170, 172, 176, 184, 188, 196, 200, 208, 212, 230, 232, 236, 238, 242, 244, 248, 268, 272, 284, 286, 290, 292, 296, 304, 316, 320, 322, 328, 332, 338, 344, 356, 364, 368, 374
Offset: 1

Views

Author

David James Sycamore, Aug 17 2019

Keywords

Comments

Subsequence of A309769. Even number m is a term if and only if for every odd prime divisor p, m can be written as 2*r*p, where r >= 2, and p is greater than the smallest prime divisor of 2*r-1.
From above, 4^k*p is a term for every prime p >= 5 and k >= 1. - David A. Corneth, Aug 17 2019
More general than the above, David James Sycamore finds (2*r)^k * p is a term for all r>=2, k>=1 and prime p > q, the smallest prime divisor of 2*r-1. - David A. Corneth, Aug 26 2019

Examples

			20 = 4*5 is a term (k=2 for p=5).
110 = 10*11 = 22*5 is a term (k=8 for p=11 and k=2 for p=5).
		

Crossrefs

Cf. A309769.

Programs

  • Mathematica
    kQ[n_, p_] := Module[{ans = False}, Do[If[Divisible[n - k, p - k], ans = True; Break[]], {k, 1, p - 2}]; ans]; aQ[n_] := EvenQ[n] && Length[(p = FactorInteger[ n][[2 ;; -1, 1]])] > 0 && AllTrue[p, kQ[n, #] &]; Select[Range[500], aQ] (* Amiram Eldar, Aug 17 2019 *)
  • PARI
    getk(p, m) = {for (k=1, p-2, if (((m-k) % (p-k)) == 0, return(k)););}
    isok(m) = {if ((m % 2) == 0, my(f = factor(m)[,1]~); if (#f == 1, return (0)); for (i=2, #f, if (!getk(f[i], m), return(0));); return (1););} \\ Michel Marcus, Aug 26 2019

Extensions

More terms from Amiram Eldar, Aug 17 2019

A309781 a(n) is the smallest even number m having n distinct odd prime divisors p_1, p_2, ..., p_n, each of which (p_i; i=1..n) has the property that there exists a k_i (0 < k_i < p_i-1) such that p_i - k_i | m - k_i.

Original entry on oeis.org

20, 110, 2926, 43010, 704990, 37461710, 859382810, 48530806610, 2383068532130, 139761750534406, 6586251483915290, 302528651777276210, 37556939168033169170, 2727217723862008961870, 222939356264469226235810
Offset: 1

Views

Author

David James Sycamore, Aug 17 2019

Keywords

Comments

Subsequence of A309769 and A309780. a(1) is the only nonsquarefree known term. Conjecture: For n > 1 the minimal condition requires m to be squarefree and for every odd prime divisor p of m to be such that m/p - 1 is composite with least prime divisor q < p (k=p-q). No term is divisible by 3.
Not all terms are coprime to 7 and the terms aren't all 97-smooth. For n = 16..18, there are upper bounds on a(n): 16808251841257353520347590, 1627869069994521415245268370, 202089221222977079276742661490. - David A. Corneth, Sep 26 2019

Examples

			a(2) = 110 = (2*5)*11; q = 3 < 11; also 110=(2*11)*5; q = 3 < 5.
		

Crossrefs

Programs

  • Mathematica
    kQ[n_, p_] := Module[{ans = False}, Do[If[Divisible[n - k, p - k], ans = True; Break[]], {k, 1, p - 2}]; ans]; aQ[n_] := EvenQ[n] && Length[(p = FactorInteger[ n][[2 ;; -1, 1]])] > 0 && AllTrue[p, kQ[n, #] &]; oddomega[n_] := PrimeNu[n / 2^IntegerExponent[n, 2]]; s = {}; om = 1; Do[If[oddomega[n] == om && aQ[n], AppendTo[s, n]; om++], {n, 2, 10^16, 2}]; s (* Amiram Eldar, Aug 17 2019 *)
  • PARI
    getk(p, m) = {for (k=1, p-2, if (((m-k) % (p-k)) == 0, return(k)); ); }
    isok1(m) = {if ((m % 2) == 0, my(f = factor(m)[, 1]~); if (#f == 1, return (0)); for (i=2, #f, if (!getk(f[i], m), return(0)); ); return (1); ); }
    isok(k, n) = (omega(k/(2^valuation(k, 2))) == n) && isok1(k);
    a(n) = {my(k=2*prod(k=2, n+1, prime(k))); while (!isok(k, n), k+=2); k;} \\ Michel Marcus, Aug 27 2019

Extensions

a(8) from Michel Marcus, Sep 25 2019
a(9)-a(15) from David A. Corneth, Sep 26 2019
Showing 1-2 of 2 results.