A309781 a(n) is the smallest even number m having n distinct odd prime divisors p_1, p_2, ..., p_n, each of which (p_i; i=1..n) has the property that there exists a k_i (0 < k_i < p_i-1) such that p_i - k_i | m - k_i.
20, 110, 2926, 43010, 704990, 37461710, 859382810, 48530806610, 2383068532130, 139761750534406, 6586251483915290, 302528651777276210, 37556939168033169170, 2727217723862008961870, 222939356264469226235810
Offset: 1
Examples
a(2) = 110 = (2*5)*11; q = 3 < 11; also 110=(2*11)*5; q = 3 < 5.
Programs
-
Mathematica
kQ[n_, p_] := Module[{ans = False}, Do[If[Divisible[n - k, p - k], ans = True; Break[]], {k, 1, p - 2}]; ans]; aQ[n_] := EvenQ[n] && Length[(p = FactorInteger[ n][[2 ;; -1, 1]])] > 0 && AllTrue[p, kQ[n, #] &]; oddomega[n_] := PrimeNu[n / 2^IntegerExponent[n, 2]]; s = {}; om = 1; Do[If[oddomega[n] == om && aQ[n], AppendTo[s, n]; om++], {n, 2, 10^16, 2}]; s (* Amiram Eldar, Aug 17 2019 *)
-
PARI
getk(p, m) = {for (k=1, p-2, if (((m-k) % (p-k)) == 0, return(k)); ); } isok1(m) = {if ((m % 2) == 0, my(f = factor(m)[, 1]~); if (#f == 1, return (0)); for (i=2, #f, if (!getk(f[i], m), return(0)); ); return (1); ); } isok(k, n) = (omega(k/(2^valuation(k, 2))) == n) && isok1(k); a(n) = {my(k=2*prod(k=2, n+1, prime(k))); while (!isok(k, n), k+=2); k;} \\ Michel Marcus, Aug 27 2019
Extensions
a(8) from Michel Marcus, Sep 25 2019
a(9)-a(15) from David A. Corneth, Sep 26 2019
Comments