A309787 Palindromes whose product of digits are palindromes with at least two digits.
676, 777, 16761, 17771, 23732, 32723, 61716, 71717, 1167611, 1177711, 1237321, 1327231, 1617161, 1717171, 2137312, 2317132, 3127213, 3217123, 6117116, 7117117, 111676111, 111777111, 112373211, 113272311, 116171611, 117171711, 121373121, 123171321
Offset: 1
Examples
For 676: 6*7*6 = 252. For 1717171: 1*7*1*7*1*7*1 = 343.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10912
Programs
-
Magma
f:=func
; g:=func ; [k:k in [1..10000000]| f(k) and f(&*Intseq(k)) and g(k)]; // Marius A. Burtea, Nov 12 2019 -
Maple
ispali:= proc(n) option remember; local L,i; L:= convert(n,base,10); andmap(i -> L[i]=L[-i], [$1..floor(nops(L)/2)]) end proc: P[1]:= [$1..9]: P[2]:= [seq(11*i,i=1..9)]: for d from 3 to 13 do P[d]:= [seq(seq((10^(d-1)+1)*i+10*x, x=P[d-2]),i=1..9)] od: filter:= proc(n) local p; p:= convert(convert(n,base,10),`*`); p >= 11 and ispali(p) end proc: map(op,[seq(select(filter, P[d]),d=1..13)]); # Robert Israel, Nov 14 2019
-
Mathematica
pd[n_] := Times @@ IntegerDigits[n]; aQ[n_] := PalindromeQ[n] && (p = pd[n]) > 9 && PalindromeQ[p]; Select[Range[10^7], aQ] (* Amiram Eldar, Nov 12 2019 *)
Extensions
Corrected by Robert Israel, Nov 14 2019
Comments