cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A309795 Number of even parts appearing among the second largest parts of the partitions of n into 4 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 3, 3, 4, 5, 7, 9, 12, 14, 17, 19, 23, 27, 32, 36, 42, 47, 54, 60, 68, 75, 84, 92, 103, 113, 125, 135, 148, 160, 175, 189, 206, 221, 239, 255, 275, 294, 316, 336, 360, 382, 408, 432, 460, 486, 516, 544, 577, 608, 643, 675, 712, 747
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 17 2019

Keywords

Examples

			Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
                                                         1+1+1+9
                                                         1+1+2+8
                                                         1+1+3+7
                                                         1+1+4+6
                                             1+1+1+8     1+1+5+5
                                             1+1+2+7     1+2+2+7
                                 1+1+1+7     1+1+3+6     1+2+3+6
                                 1+1+2+6     1+1+4+5     1+2+4+5
                                 1+1+3+5     1+2+2+6     1+3+3+5
                     1+1+1+6     1+1+4+4     1+2+3+5     1+3+4+4
         1+1+1+5     1+1+2+5     1+2+2+5     1+2+4+4     2+2+2+6
         1+1+2+4     1+1+3+4     1+2+3+4     1+3+3+4     2+2+3+5
         1+1+3+3     1+2+2+4     1+3+3+3     2+2+2+5     2+2+4+4
         1+2+2+3     1+2+3+3     2+2+2+4     2+2+3+4     2+3+3+4
         2+2+2+2     2+2+2+3     2+2+3+3     2+3+3+3     3+3+3+3
--------------------------------------------------------------------------
  n  |      8           9          10          11          12        ...
--------------------------------------------------------------------------
a(n) |      3           3           4           5           7        ...
--------------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, -1, 0, 0, 0, 1, -2, 2, -2, 1, 0, 0, 0, -1, 2, -1}, {0, 0, 0, 0, 0, 0, 1, 2, 3, 3, 4, 5, 7, 9, 12, 14}, 50]
  • PARI
    concat([0,0,0,0,0,0], Vec(x^6*(1 - x^3 + x^4) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 + x^4)) + O(x^70))) \\ Colin Barker, Oct 10 2019

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} ((i-1) mod 2).
From Colin Barker, Aug 18 2019: (Start)
G.f.: x^6*(1 - x^3 + x^4) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 + x^4)).
a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + 2*a(n-8) - 2*a(n-9) + a(n-10) - a(n-14) + 2*a(n-15) - a(n-16) for n>15.
(End) [Recurrence verified by Wesley Ivan Hurt, Aug 25 2019]
Showing 1-1 of 1 results.