A309799 Number of distinct nonnegative values that can be assumed by the determinant of an n X n matrix whose entries are a permutation of the multiset {1^n,..,n^n}.
1, 2, 13, 147, 2162, 40498, 948618
Offset: 1
Examples
a(2) = 2: 0 = det[1,1; 2,2], 3 = det[2,1; 1,2] are the two possible nonnegative values of the determinant. a(3) = 13, because 0 = det[1,2,3; 1,2,3; 1,2,3], 1 = det[2,2,1; 3,2,1; 3,3,1], 2 = det[3,2,3; 1,2,3; 1,1,2], 3 = det[3,3,3; 1,2,2; 1,1,2], 4 = det[1,3,3; 2,2,1; 1,3,2], 5 = det[2,2,1; 1,3,3; 1,2,3], 6 = det[1,3,2; 1,2,3; 2,1,3], 7 = det[1,3,1; 1,2,3; 2,2,3], 8 = det[1,1,2; 3,3,2; 1,3,2], 12 = det[2,3,1; 2,1,3; 3,1,2], 13 = det[3,3,1; 1,3,2; 2,1,2], 15 = det[2,1,3; 3,1,1; 2,3,2], 18 = det[2,3,1; 1,2,3; 3,1,2] are the 13 possible nonnegative values of the determinant.
Comments