A309824 Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/3).
1, 4, 8, 7, 1, 5, 1, 7, 8, 7, 5, 5, 8, 0, 6, 0, 8, 4, 0, 2, 4, 6, 5, 9, 1, 5, 4, 0, 5, 2, 8, 6, 0, 3, 5, 7, 2, 9, 5, 7, 9, 4, 4, 5, 3, 8, 1, 1, 0, 9, 3, 5, 4, 8, 4, 7, 4, 4, 3, 1, 3, 5, 0, 3, 7, 0, 2, 0, 9, 8, 7, 2, 6, 1, 1, 6, 1, 0, 5, 9, 7, 6, 3, 6, 7, 7, 6, 7, 7, 0, 9, 8, 1, 4, 3, 3, 3, 3, 7, 1
Offset: 0
Examples
1^3 == 1 (mod 10). 41^3 == 21 (mod 10^2). 841^3 == 321 (mod 10^3). 7841^3 == 4321 (mod 10^4). 17841^3 == 54321 (mod 10^5). 517841^3 == 654321 (mod 10^6). 1517841^3 == 7654321 (mod 10^7). 71517841^3 == 87654321 (mod 10^8). 871517841^3 == 987654321 (mod 10^9). 7871517841^3 == 8987654321 (mod 10^10). 57871517841^3 == 78987654321 (mod 10^11). 557871517841^3 == 678987654321 (mod 10^12). 8557871517841^3 == 5678987654321 (mod 10^13). 8557871517841^3 == 45678987654321 (mod 10^14). 608557871517841^3 == 345678987654321 (mod 10^15). 608557871517841^3 == 2345678987654321 (mod 10^16). 80608557871517841^3 == 12345678987654321 (mod 10^17).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
PARI
N=100; M=2345678987654321/(1-10^16); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/3), 2^N), Mod((M+O(5^N))^(1/3), 5^N)))), N)
Comments