A309825 Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/7).
1, 6, 9, 2, 4, 8, 8, 2, 9, 9, 4, 6, 9, 7, 6, 9, 8, 5, 3, 1, 4, 8, 8, 1, 6, 4, 8, 4, 5, 6, 4, 2, 0, 2, 7, 9, 8, 7, 5, 9, 7, 8, 7, 9, 8, 6, 5, 0, 8, 4, 5, 1, 4, 6, 8, 0, 2, 5, 0, 8, 8, 9, 4, 8, 1, 3, 5, 2, 3, 6, 0, 8, 6, 8, 2, 0, 3, 3, 5, 6, 5, 1, 8, 8, 5, 5, 3, 4, 8, 5, 0, 7, 6, 6, 8, 5, 7, 8, 0, 9
Offset: 0
Examples
1^7 == 1 (mod 10). 61^7 == 21 (mod 10^2). 961^7 == 321 (mod 10^3). 2961^7 == 4321 (mod 10^4). 42961^7 == 54321 (mod 10^5). 842961^7 == 654321 (mod 10^6). 8842961^7 == 7654321 (mod 10^7). 28842961^7 == 87654321 (mod 10^8). 928842961^7 == 987654321 (mod 10^9). 9928842961^7 == 8987654321 (mod 10^10). 49928842961^7 == 78987654321 (mod 10^11). 649928842961^7 == 678987654321 (mod 10^12). 9649928842961^7 == 5678987654321 (mod 10^13). 79649928842961^7 == 45678987654321 (mod 10^14). 679649928842961^7 == 345678987654321 (mod 10^15). 9679649928842961^7 == 2345678987654321 (mod 10^16). 89679649928842961^7 == 12345678987654321 (mod 10^17).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
PARI
N=100; M=2345678987654321/(1-10^16); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/7), 2^N), Mod((M+O(5^N))^(1/7), 5^N)))), N)
Comments