A309826 Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/9).
1, 8, 8, 0, 4, 8, 4, 1, 9, 9, 2, 7, 6, 6, 8, 8, 6, 9, 3, 6, 4, 4, 0, 1, 1, 5, 8, 7, 2, 4, 6, 0, 9, 4, 0, 7, 1, 6, 3, 9, 4, 2, 5, 3, 3, 9, 9, 5, 1, 1, 4, 6, 3, 0, 7, 6, 8, 7, 1, 4, 8, 8, 2, 7, 8, 0, 3, 7, 3, 8, 0, 2, 9, 5, 1, 4, 4, 5, 3, 5, 8, 3, 1, 8, 7, 9, 8, 8, 7, 8, 6, 5, 2, 7, 4, 5, 6, 2, 2, 7
Offset: 0
Examples
1^9 == 1 (mod 10). 81^9 == 21 (mod 10^2). 881^9 == 321 (mod 10^3). 881^9 == 4321 (mod 10^4). 40881^9 == 54321 (mod 10^5). 840881^9 == 654321 (mod 10^6). 4840881^9 == 7654321 (mod 10^7). 14840881^9 == 87654321 (mod 10^8). 914840881^9 == 987654321 (mod 10^9). 9914840881^9 == 8987654321 (mod 10^10). 29914840881^9 == 78987654321 (mod 10^11). 729914840881^9 == 678987654321 (mod 10^12). 6729914840881^9 == 5678987654321 (mod 10^13). 66729914840881^9 == 45678987654321 (mod 10^14). 866729914840881^9 == 345678987654321 (mod 10^15). 8866729914840881^9 == 2345678987654321 (mod 10^16). 68866729914840881^9 == 12345678987654321 (mod 10^17).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
PARI
N=100; M=2345678987654321/(1-10^16); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/9), 2^N), Mod((M+O(5^N))^(1/9), 5^N)))), N)
Comments