A309828 Squares formed by concatenating k and 2*k+1.
25, 49, 1225, 4489, 112225, 444889, 11122225, 44448889, 816416329, 1111222225, 1451229025, 3832476649, 4444488889, 111112222225, 444444888889, 10185602037121, 11111122222225, 44444448888889, 46355849271169, 997230019944601, 1111111222222225, 1231148024622961
Offset: 1
Examples
5^2 = 25 = 2_(2 * 2 + 1); 7^2 = 49 = 4_(2 * 4 + 1); 35^2 = 1225 = 12_(2 * 12 + 1); 61907^2 = 3832476649 = 38324_(2 * 38324 + 1).
References
- Ion Cucurezeanu, Perfect squares and cubes of integers, Ed. Gil, Zalău, (2007), ch. 4, p. 25, pr. 211, 212 (in Romanian).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..286
Programs
-
Magma
[a:n in [1..30000000]|IsSquare(a) where a is 10^(#Intseq(2*n+1))*n+2*n+1];
-
Maple
F:= proc(m) local x,X,A; X:= [numtheory:-rootsunity(2,10^m+2)]; A:= map(x -> (x^2-1)/(10^m+2), X); A:= sort(select(x -> 2*x+1>=10^(m-1) and 2*x+1<10^m, A)); op(map(x -> x*10^m+2*x+1, A)) end proc: subsop(1=NULL, [seq(F(m),m=1..10)]); # Robert Israel, Aug 20 2019
-
Mathematica
Select[Array[FromDigits@ Flatten@ IntegerDigits[{#, 2 # + 1}] &, 10^5], IntegerQ@ Sqrt@ # &] (* Michael De Vlieger, Aug 19 2019 *)
-
Python
def Test(n): s = str(n) ps, ss = s[0:len(s)//2], s[len(s)//2:len(s)] return int(ss) == 2*int(ps)+1 and s[len(s)//2] != "0" n, a = 1, 4 while n < 23: if Test(a*a): print(n,a*a) n = n+1 a = a+1 # A.H.M. Smeets, Aug 19 2019
-
Python
from itertools import count, islice from sympy.ntheory.primetest import is_square def A309828_gen(): # generator of terms return filter(is_square,(int(str(k)+str((k<<1)+1)) for k in count(1))) A309828_list = list(islice(A309828_gen(),20)) # Chai Wah Wu, Feb 20 2023
Comments