A309840 If n = Sum (2^e_k) then a(n) = Product (Fibonacci(e_k + 3)).
1, 2, 3, 6, 5, 10, 15, 30, 8, 16, 24, 48, 40, 80, 120, 240, 13, 26, 39, 78, 65, 130, 195, 390, 104, 208, 312, 624, 520, 1040, 1560, 3120, 21, 42, 63, 126, 105, 210, 315, 630, 168, 336, 504, 1008, 840, 1680, 2520, 5040, 273, 546, 819, 1638, 1365, 2730, 4095, 8190
Offset: 0
Keywords
Examples
23 = 2^0 + 2^1 + 2^2 + 2^4 so a(23) = Fibonacci(3) * Fibonacci(4) * Fibonacci(5) * Fibonacci(7) = 390.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..16384
- Michael De Vlieger, Fan style binary tree showing a(n) for n = 0..2^14, showing primes in red, perfect prime powers in gold, squarefree composites in green, and numbers neither squarefree nor prime powers in blue and magenta, where magenta additionally represents powerful numbers that are not perfect prime powers and bright green represents primorials.
Programs
-
Mathematica
nmax = 55; CoefficientList[Series[Product[(1 + Fibonacci[k + 3] x^(2^k)), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] a[0] = 1; a[n_] := Fibonacci[Floor[Log[2, n]] + 3] a[n - 2^Floor[Log[2, n]]]; Table[a[n], {n, 0, 55}]
-
PARI
a(n)={vecprod([fibonacci(k+2) | k<-Vec(select(b->b, Vecrev(digits(n, 2)), 1))])} \\ Andrew Howroyd, Aug 19 2019
Formula
G.f.: Product_{k>=0} (1 + Fibonacci(k + 3) * x^(2^k)).
a(0) = 1; a(n) = Fibonacci(floor(log_2(n)) + 3) * a(n - 2^floor(log_2(n))).
a(2^(k-2)-1) = A003266(k).