cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309865 Number T(n,k) of k-uniform hypergraphs on n unlabeled nodes; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

2, 2, 2, 2, 3, 2, 2, 4, 4, 2, 2, 5, 11, 5, 2, 2, 6, 34, 34, 6, 2, 2, 7, 156, 2136, 156, 7, 2, 2, 8, 1044, 7013320, 7013320, 1044, 8, 2, 2, 9, 12346, 1788782616656, 29281354514767168, 1788782616656, 12346, 9, 2
Offset: 0

Views

Author

Alois P. Heinz, Aug 20 2019

Keywords

Comments

T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = 1 for k>n.
See A000088 and A000665 for more references.

Examples

			Triangle T(n,k) begins:
  2;
  2, 2;
  2, 3,    2;
  2, 4,    4,       2;
  2, 5,   11,       5,       2;
  2, 6,   34,      34,       6,    2;
  2, 7,  156,    2136,     156,    7, 2;
  2, 8, 1044, 7013320, 7013320, 1044, 8, 2;
  ...
		

Crossrefs

Cf. A309858 (the same as square array).

Programs

  • Maple
    g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
         [x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
    h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
         /igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
         /p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
        `if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
    b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
         /n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
    T:= proc(n, k) option remember; `if`(k>n-k,
          T(n, n-k), b(n$2, [], k))
        end:
    seq(seq(T(n, k), k=0..n), n=0..9);

Formula

T(n,k) = T(n,n-k) for 0 <= k <= n.