A309865 Number T(n,k) of k-uniform hypergraphs on n unlabeled nodes; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
2, 2, 2, 2, 3, 2, 2, 4, 4, 2, 2, 5, 11, 5, 2, 2, 6, 34, 34, 6, 2, 2, 7, 156, 2136, 156, 7, 2, 2, 8, 1044, 7013320, 7013320, 1044, 8, 2, 2, 9, 12346, 1788782616656, 29281354514767168, 1788782616656, 12346, 9, 2
Offset: 0
Examples
Triangle T(n,k) begins: 2; 2, 2; 2, 3, 2; 2, 4, 4, 2; 2, 5, 11, 5, 2; 2, 6, 34, 34, 6, 2; 2, 7, 156, 2136, 156, 7, 2; 2, 8, 1044, 7013320, 7013320, 1044, 8, 2; ...
Links
- Alois P. Heinz, Rows n = 0..14, flattened
- Jianguo Qian, Enumeration of unlabeled uniform hypergraphs, Discrete Math. 326 (2014), 66--74. MR3188989.
- Wikipedia, Hypergraph
Crossrefs
Programs
-
Maple
g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x-> [x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]): h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i] /igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m /p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq( `if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)): b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n])) /n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)): T:= proc(n, k) option remember; `if`(k>n-k, T(n, n-k), b(n$2, [], k)) end: seq(seq(T(n, k), k=0..n), n=0..9);
Formula
T(n,k) = T(n,n-k) for 0 <= k <= n.
Comments