cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A309858 Number A(n,k) of k-uniform hypergraphs on n unlabeled nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

2, 1, 2, 1, 2, 2, 1, 1, 3, 2, 1, 1, 2, 4, 2, 1, 1, 1, 4, 5, 2, 1, 1, 1, 2, 11, 6, 2, 1, 1, 1, 1, 5, 34, 7, 2, 1, 1, 1, 1, 2, 34, 156, 8, 2, 1, 1, 1, 1, 1, 6, 2136, 1044, 9, 2, 1, 1, 1, 1, 1, 2, 156, 7013320, 12346, 10, 2, 1, 1, 1, 1, 1, 1, 7, 7013320, 1788782616656, 274668, 11, 2
Offset: 0

Views

Author

Alois P. Heinz, Aug 20 2019

Keywords

Comments

See A000088 and A000665 for more references.

Examples

			Square array A(n,k) begins:
  2, 1,    1,       1,       1,    1, 1, 1, ...
  2, 2,    1,       1,       1,    1, 1, 1, ...
  2, 3,    2,       1,       1,    1, 1, 1, ...
  2, 4,    4,       2,       1,    1, 1, 1, ...
  2, 5,   11,       5,       2,    1, 1, 1, ...
  2, 6,   34,      34,       6,    2, 1, 1, ...
  2, 7,  156,    2136,     156,    7, 2, 1, ...
  2, 8, 1044, 7013320, 7013320, 1044, 8, 2, ...
		

Crossrefs

Cf. A301922, A309865 (the same as triangle).

Programs

  • Maple
    g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
         [x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
    h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
         /igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
         /p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
        `if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
    b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
         /n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
    A:= proc(n, k) option remember; `if`(k>n, 1,
         `if`(k>n-k, A(n, n-k), b(n$2, [], k)))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • PARI
    permcount(v)={my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L, k); while(#L0, u=vecsort(apply(f, u)); d=lex(u, v)); !d}
    Q(n, k, perm)={my(t=0); forsubset([n, k], v, t += can(Vec(v), t->perm[t])); t}
    T(n, k)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(n, k, rep(p))); s/n!} \\ Andrew Howroyd, Aug 22 2019

Formula

A(n,k) = A(n,n-k) for 0 <= k <= n.
A(n,k) - A(n-1,k) = A301922(n,k) for n,k >= 1.

A309876 Number T(n,k) of k-uniform hypergraphs on n unlabeled nodes with at least one (possibly empty) hyperedge; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 10, 4, 1, 1, 5, 33, 33, 5, 1, 1, 6, 155, 2135, 155, 6, 1, 1, 7, 1043, 7013319, 7013319, 1043, 7, 1, 1, 8, 12345, 1788782616655, 29281354514767167, 1788782616655, 12345, 8, 1
Offset: 0

Views

Author

Peter Dolland and Alois P. Heinz, Aug 21 2019

Keywords

Comments

A hypergraph is called k-uniform if all hyperedges have the same cardinality k.
T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = 0 for k>n.

Examples

			T(3,0) = 1: {{}}.
T(3,1) = 3: {1}, {1,2}, {1,2,3}.
T(3,2) = 3: {12}, {12,13}, {12,13,23}.
T(3,3) = 1: {123}.
(Non-isomorphic representatives of the hypergraphs are given.)
Triangle T(n,k) begins:
  1;
  1, 1;
  1, 2,    1;
  1, 3,    3,       1;
  1, 4,   10,       4,       1;
  1, 5,   33,      33,       5,    1;
  1, 6,  155,    2135,     155,    6, 1;
  1, 7, 1043, 7013319, 7013319, 1043, 7, 1;
  ...
		

Crossrefs

Columns k=0-1 give: A000012, A001477.
Row sums give A309868.
T(2n,n) gives A328157.

Programs

  • Maple
    g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
         [x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
    h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
         /igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
         /p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
        `if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
    b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
         /n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
    T:= proc(n, k) option remember; `if`(k>n-k,
          T(n, n-k), b(n$2, [], k)-1)
        end:
    seq(seq(T(n, k), k=0..n), n=0..9);

Formula

T(n,k) = A309865(n,k) - 1 = A309858(n,k) - 1.
T(n,k) = T(n,n-k) for 0 <= k <= n.

A309868 Number of uniform hypergraphs on n unlabeled nodes with at least one (possibly empty) hyperedge.

Original entry on oeis.org

1, 2, 4, 8, 20, 78, 2459, 14028740, 29284932080025185, 468863491068204454517854447175206, 1994324729204021501147398087008429477142243091610827370319897909501551
Offset: 0

Views

Author

Peter Dolland and Alois P. Heinz, Aug 20 2019

Keywords

Comments

A hypergraph is called uniform if all hyperedges have the same cardinality.

Examples

			Non-isomorphic representatives of the a(3) = 8 uniform hypergraphs on 3 unlabeled nodes with at least one hyperedge: {{}}, {1}, {1,2}, {1,2,3}, {12}, {12,13}, {12,13,23}, {123}.
		

Crossrefs

Row sums of A309876.
Cf. A309865.

Programs

  • Maple
    g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
         [x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
    h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
         /igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
         /p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
        `if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
    b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
         /n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
    T:= proc(n, k) T(n, k):=`if`(k>n-k, T(n, n-k), b(n$2, [], k)) end:
    a:= n-> add(T(n, k)-1, k=0..n):
    seq(a(n), n=0..10);

Formula

a(n) = Sum_{k=0..n} (A309865(n,k) - 1).

A309895 Number of floor(n/2)-uniform hypergraphs on n unlabeled nodes.

Original entry on oeis.org

2, 2, 3, 4, 11, 34, 2136, 7013320, 29281354514767168, 234431745534048922731115555415680, 1994324729203114587259985605157804740271034553359179870979936357974016
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2019

Keywords

Comments

A hypergraph is called k-uniform if all hyperedges have the same cardinality k.

Crossrefs

Formula

a(n) = A309858(n,floor(n/2)) = A309865(n,floor(n/2)).
Showing 1-4 of 4 results.