A309883 Numbers k such that A003132(k^2) = A003132(k), where A003132(n) is the sum of the squares of the digits of n.
0, 1, 10, 35, 100, 152, 350, 377, 452, 539, 709, 1000, 1299, 1398, 1439, 1519, 1520, 1569, 1591, 1679, 1965, 2599, 2838, 3332, 3500, 3598, 3770, 4520, 4586, 4754, 4854, 5390, 5501, 5835, 5857, 6388, 6595, 6735, 6861, 6951, 7090, 7349, 7887, 8395, 9795, 10000, 10056, 10159, 10389, 11055, 11091, 12990, 12999
Offset: 1
Examples
377^2 = 142129, A003132(377) = 3^2 + 7^2 + 7^2 = 107, A003132(142129) = 1^2 + 4^2 + 2^2 + 1^2 + 2^2 + 9^2 = 107.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[0] cat [k:k in [1..13000]| &+[c^2: c in Intseq(k)] eq &+[c^2: c in Intseq(k^2)]]; // Marius A. Burtea, Aug 24 2019
-
Maple
filter:= proc(n) local t; add(t^2, t = convert(n,base,10)) = add(t^2, t = convert(n^2,base,10)) end proc: select(filter, [$0..20000]); # Robert Israel, Apr 30 2023
-
Mathematica
digSum[n_] := Total[IntegerDigits[n]^2]; Select[Range[0, 13000], digSum[#] == digSum[#^2] &] (* Amiram Eldar, Aug 22 2019 *)
-
PARI
for(i = 0, 30000, if(norml2(digits(i^2)) == norml2(digits(i)), print1(i, ", ")))
-
Python
def A003132(n): s = 0 while n > 0: s, n = s+(n%10)**2, n//10 return s n, a = 0, 0 while n < 50: if A003132(a) == A003132(a*a): n = n+1 print(n,a) a = a+1 # A.H.M. Smeets, Aug 23 2019
Comments