cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309912 a(n) = Product_{p prime, p <= n} floor(n/p).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 6, 6, 8, 12, 30, 30, 48, 48, 112, 210, 240, 240, 324, 324, 480, 840, 1848, 1848, 2304, 2880, 6240, 7020, 10080, 10080, 14400, 14400, 15360, 25344, 53856, 78540, 90720, 90720, 191520, 311220, 374400, 374400, 508032, 508032, 709632, 855360, 1788480, 1788480
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 22 2019

Keywords

Comments

Product of exponents of prime factorization of A048803 (squarefree factorials).

Examples

			A048803(14) = 1816214400 = 2^7 * 3^4 * 5^2 * 7^2 * 11 * 13 so a(14) = 7 * 4 * 2 * 2 * 1 * 1 = 112.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(floor(n/p), p=select(isprime, [$2..n])):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    Table[Product[Floor[n/Prime[k]], {k, 1, PrimePi[n]}], {n, 0, 47}]
  • Python
    from math import prod
    from sympy import primerange
    def A309912(n): return prod(n//p for p in primerange(n)) # Chai Wah Wu, Jun 02 2025

Formula

a(n) = Product_{k=1..A000720(n)} floor(n/A000040(k)).
a(n) = A005361(A048803(n)).