cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A308637 Decimal expansion of Pi^3/Zeta(3).

Original entry on oeis.org

2, 5, 7, 9, 4, 3, 5, 0, 1, 6, 6, 6, 1, 8, 6, 8, 4, 0, 1, 8, 5, 5, 8, 6, 3, 6, 5, 7, 9, 3, 9, 6, 5, 1, 3, 2, 9, 0, 0, 5, 0, 9, 5, 2, 3, 2, 7, 1, 3, 1, 2, 2, 6, 0, 7, 0, 6, 1, 4, 0, 2, 1, 3, 4, 0, 6, 4, 9, 4, 3, 4, 9, 1, 3, 4, 9, 2, 5, 0, 6, 1, 4, 1, 2, 2, 5, 1
Offset: 2

Views

Author

Seiichi Manyama, Aug 23 2019

Keywords

Crossrefs

-----+---------------------------------
n | Zeta(n)
-----+---------------------------------
2 | Pi^2 / 6 = A013661.
3 | Pi^3 / 25.79... = A002117.
4 | Pi^4 / 90 = A013662.
5 | Pi^5 / A309926 = A013663.
6 | Pi^6 / 945 = A013664.
7 | Pi^7 / A309927 = A013665.
8 | Pi^8 / 9450 = A013666.
9 | Pi^9 / A309928 = A013667.
10 | Pi^10 / 93555 = A013668.
11 | Pi^11 / A309929 = A013669.
12 | 691*Pi^12 / 638512875 = A013670.
...
Cf. A002432, A091925, A276120 (Zeta(3)/Pi^3).

Programs

  • Mathematica
    RealDigits[Pi^3/Zeta[3], 10, 100][[1]] (* Amiram Eldar, Aug 24 2019 *)
  • PARI
    Pi^3/zeta(3)

Formula

Pi^3/Zeta(3) = A091925/A002117.

Extensions

More terms from Amiram Eldar, Aug 24 2019

A309946 a(n) = floor(Pi^n/Zeta(n)).

Original entry on oeis.org

0, 6, 25, 90, 295, 945, 2995, 9450, 29749, 93555, 294058, 924041, 2903320, 9121612, 28657269, 90030844, 282842403, 888579011, 2791558622, 8769948429, 27551618702, 86555983552, 271923674474, 854273468992, 2683779334331, 8431341566236, 26487840921750, 83214006759229, 261424512797515
Offset: 1

Views

Author

Seiichi Manyama, Aug 24 2019

Keywords

Examples

			Pi^12/Zeta(12) = 638512875/691 = 924041.78... So a(12) = 924041.
		

Crossrefs

Decimal expansion of Pi^k/Zeta(k): A308637 (k = 3), A309926 (k = 5), A309927 (k = 7), A309928 (k = 9), A309929 (k = 11).
Cf. A001672 (floor(Pi^n)), A002432, A046988, A100594.

Programs

  • Mathematica
    Table[Floor[Pi^n/Zeta[n]], {n, 20}] (* Alonso del Arte, Aug 24 2019 *)
  • PARI
    {a(n) = if(n==1, 0, n==4, 90, floor(Pi^n/zeta(n)))}

Formula

a(2*n) = A100594(n).
Showing 1-2 of 2 results.