cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A309938 Triangle read by rows: T(n,k) is the number of compositions of n with k parts and differences all equal to 1 or -1.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 0, 1, 0, 1, 2, 1, 0, 0, 1, 0, 2, 2, 0, 0, 1, 2, 1, 0, 1, 0, 0, 1, 0, 1, 4, 1, 0, 0, 0, 1, 2, 2, 0, 3, 2, 0, 0, 0, 1, 0, 1, 4, 2, 0, 1, 0, 0, 0, 1, 2, 1, 0, 3, 6, 1, 0, 0, 0, 0, 1, 0, 2, 4, 3, 0, 4, 2, 0, 0, 0, 0, 1, 2, 1, 0, 3, 8, 3, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Andrew Howroyd, Aug 23 2019

Keywords

Comments

Parts will alternate between being odd and even. For even k, a composition cannot be the same as its reversal and therefore for even k, T(n,k) is even.

Examples

			Triangle begins:
  1;
  1, 0;
  1, 2, 0;
  1, 0, 1, 0;
  1, 2, 1, 0, 0;
  1, 0, 2, 2, 0,  0;
  1, 2, 1, 0, 1,  0, 0;
  1, 0, 1, 4, 1,  0, 0, 0;
  1, 2, 2, 0, 3,  2, 0, 0, 0;
  1, 0, 1, 4, 2,  0, 1, 0, 0, 0;
  1, 2, 1, 0, 3,  6, 1, 0, 0, 0, 0;
  1, 0, 2, 4, 3,  0, 4, 2, 0, 0, 0, 0;
  1, 2, 1, 0, 3,  8, 3, 0, 1, 0, 0, 0, 0;
  1, 0, 1, 4, 3,  0, 6, 8, 1, 0, 0, 0, 0, 0;
  1, 2, 2, 0, 4, 10, 5, 0, 5, 2, 0, 0, 0, 0, 0;
  ...
For n = 6 there are a total of 5 compositions:
  k = 1: (6)
  k = 3: (123), (321)
  k = 4: (2121), (1212)
		

Crossrefs

Row sums are A173258.
T(2n,n) gives A364529.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n<1 or i<1, 0,
         `if`(n=i, x, add(expand(x*b(n-i, i+j)), j=[-1, 1])))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(add(b(n, j), j=1..n)):
    seq(T(n), n=1..14);  # Alois P. Heinz, Jul 22 2023
  • Mathematica
    b[n_, i_] := b[n, i] = If[n < 1 || i < 1, 0, If[n == i, x, Sum[Expand[x*b[n - i, i + j]], {j, {-1, 1}}]]];
    T[n_] :=  CoefficientList[Sum[b[n, j], {j, 1, n}], x] // Rest // PadRight[#, n]&;
    Table[T[n], {n, 1, 13}] // Flatten (* Jean-François Alcover, Sep 06 2023, after Alois P. Heinz *)
  • PARI
    step(R,n)={matrix(n, n, i, j, if(i>j, if(j>1, R[i-j, j-1]) + if(j+1<=n, R[i-j, j+1])) )}
    T(n)={my(v=vector(n), R=matid(n), m=0); while(R, m++; v[m]+=vecsum(R[n,]); R=step(R,n)); v}
    for(n=1, 15, print(T(n)))

A325591 Number of compositions of n with circular differences all equal to 1, 0, or -1.

Original entry on oeis.org

1, 2, 4, 6, 11, 15, 27, 43, 68, 116, 189, 311, 519, 860, 1433, 2380, 3968, 6613, 11018, 18374, 30633, 51089, 85208, 142113, 237055, 395409, 659576, 1100262, 1835382, 3061711, 5107445, 8520122, 14213135, 23710173, 39553138, 65982316, 110071459, 183620990, 306316328
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The circular differences of a composition c of length k are c_{i + 1} - c_i for i < k and c_1 - c_i for i = k. For example, the circular differences of (1,2,1,3) are (1,-1,2,-2).

Examples

			The a(1) = 1 through a(6) = 15 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)
       (11)  (12)   (22)    (23)     (33)
             (21)   (112)   (32)     (222)
             (111)  (121)   (122)    (1122)
                    (211)   (212)    (1212)
                    (1111)  (221)    (1221)
                            (1112)   (2112)
                            (1121)   (2121)
                            (1211)   (2211)
                            (2111)   (11112)
                            (11111)  (11121)
                                     (11211)
                                     (12111)
                                     (21111)
                                     (111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ[1,##]&@@Abs[DeleteCases[Differences[Append[#,First[#]]],0]]&]],{n,15}]
  • PARI
    step(R,n,D)={matrix(n, n, i, j, if(i>j, sum(k=1, #D, my(s=D[k]); if(j>s && j+s<=n, R[i-j, j-s]))) )}
    a(n)={sum(k=1, n, my(R=matrix(n,n,i,j,i==j&&abs(i-k)<=1), t=0); while(R, t+=R[n,k]; R=step(R,n,[0,1,-1])); t)} \\ Andrew Howroyd, Aug 23 2019

Formula

a(n) ~ c * d^n, where d = 1.66820206701846111636107... (see A034297), c = 0.65837031047271348106444... - Vaclav Kotesovec, Sep 21 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 23 2019

A309939 Triangle read by rows: T(n,k) is the number of compositions of n with k parts and differences all equal to 1, 0, or -1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 3, 4, 1, 1, 1, 3, 6, 5, 1, 1, 2, 3, 6, 10, 6, 1, 1, 1, 3, 7, 12, 15, 7, 1, 1, 2, 3, 6, 14, 22, 21, 8, 1, 1, 1, 3, 8, 15, 27, 37, 28, 9, 1, 1, 2, 3, 6, 16, 32, 50, 58, 36, 10, 1, 1, 1, 3, 7, 16, 35, 63, 88, 86, 45, 11, 1
Offset: 1

Views

Author

Andrew Howroyd, Aug 23 2019

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2, 1;
  1, 1, 3, 1;
  1, 2, 3, 4,  1;
  1, 1, 3, 6,  5,  1;
  1, 2, 3, 6, 10,  6,  1;
  1, 1, 3, 7, 12, 15,  7,   1;
  1, 2, 3, 6, 14, 22, 21,   8,   1;
  1, 1, 3, 8, 15, 27, 37,  28,   9,   1;
  1, 2, 3, 6, 16, 32, 50,  58,  36,  10,   1;
  1, 1, 3, 7, 16, 35, 63,  88,  86,  45,  11,   1;
  1, 2, 3, 6, 16, 38, 74, 118, 147, 122,  55,  12,  1;
  1, 1, 3, 8, 16, 37, 83, 148, 212, 234, 167,  66, 13,  1;
  1, 2, 3, 6, 17, 40, 88, 174, 282, 366, 357, 222, 78, 14, 1;
  ...
For n = 6 there are a total of 17 compositions:
  k = 1: (6)
  k = 2: (33)
  k = 3: (123), (222), (321)
  k = 4: (1122), (1212), (1221), (2112), (2121), (2211)
  k = 5: (11112), (11121), (11211), (12111), (21111)
  k = 6: (111111)
		

Crossrefs

Row sums are A034297.

Programs

  • PARI
    step(R,n)={matrix(n, n, i, j, if(i>j, if(j>1, R[i-j, j-1]) + R[i-j, j] + if(j+1<=n, R[i-j, j+1])) )}
    T(n)={my(v=vector(n), R=matid(n), m=0); while(R, m++; v[m]+=vecsum(R[n,]); R=step(R,n)); v}
    for(n=1, 12, print(T(n)))

Formula

T(n, 1) = T(n, n) = 1.
T(n, 2) = (3 - (-1)^n)/2 for n > 1.
T(n, 3) = 3 for n > 3.
T(n, n - 1) = binomial(n-1, 1) = n - 1.
T(n, n - 2) = binomial(n-2, 2).

A309937 Irregular triangle read by rows: T(n,k) is the number of compositions of n with 2k parts and circular differences all equal to 1 or -1, (n >= 3, 1 <= k <= n/3).

Original entry on oeis.org

2, 0, 2, 0, 2, 2, 0, 0, 4, 2, 0, 2, 0, 2, 0, 2, 0, 6, 0, 4, 0, 2, 2, 0, 6, 0, 0, 2, 0, 8, 2, 0, 8, 0, 2, 0, 4, 0, 12, 0, 2, 0, 6, 0, 10, 0, 2, 0, 16, 0, 2, 2, 0, 6, 0, 20, 0, 0, 4, 0, 18, 0, 12, 2, 0, 8, 0, 30, 0, 2, 0, 2, 0, 16, 0, 30, 0, 2, 0, 6, 0, 40, 0, 14, 0, 4, 0, 20, 0, 52, 0, 2
Offset: 3

Views

Author

Andrew Howroyd, Aug 23 2019

Keywords

Comments

All values are even since the parts must alternate between even and odd and therefore a composition is never equal to its reversal.
The longest compositions will consist of alternating 1's and 2's. The number of parts cannot then exceed n / 3.

Examples

			Triangle begins:
  2;
  0;
  2;
  0, 2;
  2, 0;
  0, 4;
  2, 0, 2;
  0, 2, 0;
  2, 0, 6;
  0, 4, 0,  2;
  2, 0, 6,  0;
  0, 2, 0,  8;
  2, 0, 8,  0,  2;
  0, 4, 0, 12,  0;
  2, 0, 6,  0, 10;
  0, 2, 0, 16,  0,   2;
  2, 0, 6,  0, 20,   0;
  0, 4, 0, 18,  0,  12;
  2, 0, 8,  0, 30,   0,   2;
  0, 2, 0, 16,  0,  30,   0;
  2, 0, 6,  0, 40,   0,  14;
  0, 4, 0, 20,  0,  52,   0,   2;
  2, 0, 6,  0, 42,   0,  42,   0;
  0, 2, 0, 16,  0,  78,   0,  16;
  2, 0, 8,  0, 50,   0,  84,   0,  2;
  0, 4, 0, 18,  0,  96,   0,  56,  0;
  2, 0, 6,  0, 50,   0, 140,   0, 18;
  0, 2, 0, 16,  0, 116,   0, 128,  0, 2;
  ...
For n = 11 there are a total of 8 compositions:
  k = 1: (56), (65)
  k = 3: (121232), (123212), (212123), (212321), (232121), (321212)
		

Crossrefs

Row sums are A325589.

Programs

  • PARI
    step(R,n)={matrix(n,n,i,j, if(i>j, if(j>1, R[i-j,j-1]) + if(j+1<=n, R[i-j,j+1])))}
    T(n)={my(v=vector(n\3)); for(k=1, n, my(R=matrix(n,n,i,j,i==j&&abs(i-k)==1), m=0); while(R, m++; if(m%2==0, v[m/2]+=R[n,k]); R=step(R,n))); v}
    for(n=3, 24, print(T(n)))
Showing 1-4 of 4 results.