A309955 a(n) = [x^n] (1 + p(x))^n, where p(x) is the g.f. of A000040.
1, 2, 10, 59, 362, 2287, 14707, 95762, 629386, 4166627, 27743445, 185602188, 1246543559, 8399791922, 56762121398, 384513835219, 2610322687850, 17753944125159, 120954505004605, 825274753259894, 5638438272353597, 38569743775323134, 264127692090124488
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1185
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, ithprime(n), (h-> add(b(j, h)*b(n-j, i-h), j=0..n))(iquo(i, 2)))) end: a:= n-> b(n$2): seq(a(n), n=0..31);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 1, Prime[n], Function[h, Sum[b[j, h]*b[n-j, i-h], {j, 0, n}]][Quotient[i, 2]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)