A309973 Number T(n,k) of colored integer partitions of n using all colors of a k-set such that parts i have distinct color patterns in arbitrary order and each pattern for a part i has i colors in (weakly) increasing order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 3, 0, 2, 6, 10, 0, 2, 21, 42, 47, 0, 3, 42, 177, 264, 246, 0, 4, 90, 619, 1746, 2095, 1602, 0, 5, 176, 1809, 7556, 16085, 16608, 11481, 0, 6, 348, 5211, 32621, 100030, 171480, 154385, 95503, 0, 8, 640, 13961, 120964, 522890, 1262832, 1842659, 1503232, 871030
Offset: 0
Examples
T(3,1) = 2: 3aaa, 2aa1a. T(3,2) = 6: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a. T(3,3) = 10: 3abc, 2ab1c, 2ac1b, 2bc1a, 1a1b1c, 1a1c1b, 1b1a1c, 1b1c1a, 1c1a1b, 1c1b1a. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 3; 0, 2, 6, 10; 0, 2, 21, 42, 47; 0, 3, 42, 177, 264, 246; 0, 4, 90, 619, 1746, 2095, 1602; 0, 5, 176, 1809, 7556, 16085, 16608, 11481; 0, 6, 348, 5211, 32621, 100030, 171480, 154385, 95503; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, min(n-i*j, i-1), k)* binomial(binomial(k+i-1, i), j)*j!, j=0..n/i))) end: T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[b[n - i j, Min[n - i j, i-1], k] Binomial[Binomial[k+i-1, i], j] j!, {j, 0, n/i}]]]; T[n_, k_] := Sum[b[n, n, i] (-1)^(k - i) Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2020, after Maple *)
Formula
Sum_{k=1..n} k * T(n,k) = A327680(n).