A005651
Sum of multinomial coefficients (n_1+n_2+...)!/(n_1!*n_2!*...) where (n_1, n_2, ...) runs over all integer partitions of n.
Original entry on oeis.org
1, 1, 3, 10, 47, 246, 1602, 11481, 95503, 871030, 8879558, 98329551, 1191578522, 15543026747, 218668538441, 3285749117475, 52700813279423, 896697825211142, 16160442591627990, 307183340680888755, 6147451460222703502, 129125045333789172825, 2841626597871149750951
Offset: 0
For n=3, say the first three cans in the row contain red, white, and blue paint respectively. The objects can be painted r,r,r or r,r,w or r,w,b and then linearly ordered in 1 + 3 + 6 = 10 ways. - _Geoffrey Critzer_, Jun 08 2009
From _Gus Wiseman_, Sep 03 2018: (Start)
The a(3) = 10 ordered set partitions with weakly decreasing block sizes:
{{1},{2},{3}}
{{1},{3},{2}}
{{2},{1},{3}}
{{2},{3},{1}}
{{3},{1},{2}}
{{3},{2},{1}}
{{2,3},{1}}
{{1,2},{3}}
{{1,3},{2}}
{{1,2,3}}
(End)
- Abramowitz and Stegun, Handbook, p. 831, column labeled "M_1".
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 126.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..450 (first 101 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. E. Hoffman, Updown categories: Generating functions and universal covers, arXiv preprint arXiv:1207.1705 [math.CO], 2012.
- A. Knopfmacher, A. M. Odlyzko, B. Pittel, L. B. Richmond, D. Stark, G. Szekeres, and N. C. Wormald, The Asymptotic Number of Set Partitions with Unequal Block Sizes, The Electronic Journal of Combinatorics, 6 (1999), R2.
- S. Schreiber & N. J. A. Sloane, Correspondence, 1980.
Cf.
A000041,
A000110,
A000258,
A000670,
A007837,
A008277,
A008480,
A036038,
A140585,
A178682,
A212855,
A247551,
A300335,
A318762.
-
A005651b := proc(k) add( d/(d!)^(k/d),d=numtheory[divisors](k)) ; end proc:
A005651 := proc(n) option remember; local k ; if n <= 1 then 1; else (n-1)!*add(A005651b(k)*procname(n-k)/(n-k)!, k=1..n) ; end if; end proc:
seq(A005651(k), k=0..10) ; # R. J. Mathar, Jan 03 2011
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0 or i=1, n!,
b(n, i-1) +binomial(n, i)*b(n-i, min(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 29 2015, Dec 12 2016
-
Table[Total[n!/Map[Function[n, Apply[Times, n! ]], IntegerPartitions[n]]], {n, 0, 20}] (* Geoffrey Critzer, Jun 08 2009 *)
Table[Total[Apply[Multinomial, IntegerPartitions[n], {1}]], {n, 0, 20}] (* Jean-François Alcover and Olivier Gérard, Sep 11 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[t==1, 1/n!, Sum[b[n-j, j, t-1]/j!, {j, i, n/t}]]; a[n_] := If[n==0, 1, n!*b[n, 0, n]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 20 2015, after Alois P. Heinz *)
-
a(m,n):=if n=m then 1 else sum(binomial(n,k)*a(k,n-k),k,m,(n/2))+1;
makelist(a(1,n),n,0,17); /* Vladimir Kruchinin, Sep 06 2014 */
-
a(n)=my(N=n!,s);forpart(x=n,s+=N/prod(i=1,#x,x[i]!));s \\ Charles R Greathouse IV, May 01 2015
-
{ my(n=25); Vec(serlaplace(prod(k=1, n, 1/(1-x^k/k!) + O(x*x^n)))) } \\ Andrew Howroyd, Dec 20 2017
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
A327116
Number T(n,k) of colored integer partitions of n using all colors of a k-set such that all parts have different color patterns and a pattern for part i has i colors in (weakly) increasing order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 2, 6, 5, 0, 2, 15, 27, 15, 0, 3, 32, 102, 124, 52, 0, 4, 65, 319, 656, 600, 203, 0, 5, 124, 897, 2780, 4210, 3084, 877, 0, 6, 230, 2346, 10305, 23040, 27567, 16849, 4140, 0, 8, 414, 5818, 34864, 108135, 188284, 186095, 97640, 21147
Offset: 0
T(3,2) = 6; 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 2;
0, 2, 6, 5;
0, 2, 15, 27, 15;
0, 3, 32, 102, 124, 52;
0, 4, 65, 319, 656, 600, 203;
0, 5, 124, 897, 2780, 4210, 3084, 877;
0, 6, 230, 2346, 10305, 23040, 27567, 16849, 4140;
0, 8, 414, 5818, 34864, 108135, 188284, 186095, 97640, 21147;
...
-
C:= binomial:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
b(n-i*j, min(n-i*j, i-1), k)*C(C(k+i-1, i), j), j=0..n/i)))
end:
T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..12);
-
c = Binomial;
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i j, Min[n - i j, i - 1], k] c[c[k + i - 1, i], j], {j, 0, n/i}]]];
T[n_, k_] := Sum[b[n, n, i] (-1)^(k - i) c[k, i], {i, 0, k}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 27 2020, after Alois P. Heinz *)
A327679
Number of colored integer partitions of n using all colors of an initial interval of the color palette such that parts i have distinct color patterns in arbitrary order and each pattern for a part i has i colors in (weakly) increasing order.
Original entry on oeis.org
1, 1, 4, 18, 112, 732, 6156, 53720, 559584, 6138216, 76636080, 1006039320, 14693223032, 224774090592, 3756082129296, 65650522695344, 1236568354232176, 24299076684879264, 509677108276779168, 11124779898457678240, 257204596479739401760, 6174928911548312072704
Offset: 0
-
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, min(n-i*j, i-1), k)*
binomial(binomial(k+i-1, i), j)*j!, j=0..n/i)))
end:
a:= n-> add(add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k), k=0..n):
seq(a(n), n=0..22);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i j, Min[n - i j, i-1], k]Binomial[Binomial[k+i-1, i], j] j!, {j, 0, n/i}]]];
a[n_] := Sum[Sum[b[n, n, i](-1)^(k-i)Binomial[k, i], {i, 0, k}], {k, 0, n}];
a /@ Range[0, 22] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)
A327680
Total number of colors used in all colored integer partitions of n using all colors of an initial interval of the color palette such that parts i have distinct color patterns in arbitrary order and each pattern for a part i has i colors in (weakly) increasing order.
Original entry on oeis.org
0, 1, 7, 44, 358, 2904, 29112, 296448, 3520568, 43482208, 602603120, 8712724080, 138736978208, 2302036052128, 41417364992160, 776413790063328, 15597709327298944, 325945020056535968, 7238587734613470208, 166897326948551436384, 4061690336695535982048
Offset: 0
-
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, min(n-i*j, i-1), k)*
binomial(binomial(k+i-1, i), j)*j!, j=0..n/i)))
end:
a:= n-> add(add(k*b(n$2, i)*(-1)^(k-i)*
binomial(k, i), i=0..k), k=0..n):
seq(a(n), n=0..22);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i-1], k] Binomial[Binomial[k+i-1, i], j] j!, {j, 0, n/i}]]];
a[n_] := Sum[Sum[k b[n, n, i](-1)^(k-i)Binomial[k, i], {i, 0, k}], {k, 0, n}];
a /@ Range[0, 22] (* Jean-François Alcover, Dec 18 2020, after_Alois P. Heinz_ *)
A327681
Number of colored integer partitions of 2n using all colors of an n-set such that parts i have distinct color patterns in arbitrary order and each pattern for a part i has i colors in (weakly) increasing order.
Original entry on oeis.org
1, 1, 21, 619, 32621, 2619031, 298688151, 45747815408, 9130881915237, 2302153903685914, 716914926484850891, 270654298469985496639, 121905995767297357401683, 64616493201145984241278851, 39838866068219563302546530228, 28277347692301453998991014108124
Offset: 0
-
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, min(n-i*j, i-1), k)*
binomial(binomial(k+i-1, i), j)*j!, j=0..n/i)))
end:
a:= n-> add(b(2*n$2, i)*(-1)^(n-i)*binomial(n, i), i=0..n):
seq(a(n), n=0..17);
-
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k] Binomial[Binomial[k + i - 1, i], j]*j!, {j, 0, n/i}]]];
a[n_] := Sum[b[2n, 2n, i] (-1)^(n-i) Binomial[n, i], {i, 0, n}];
a /@ Range[0, 17] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)
A327890
Number of colored integer partitions of n using all colors of a 2-set such that parts i have distinct color patterns in arbitrary order and each pattern for a part i has i colors in (weakly) increasing order.
Original entry on oeis.org
0, 0, 3, 6, 21, 42, 90, 176, 348, 640, 1203, 2152, 3848, 6692, 11701, 19968, 33966, 56952, 95300, 157326, 258736, 421240, 683804, 1099830, 1762867, 2805154, 4446826, 7005486, 10999634, 17172894, 26716627, 41362952, 63837722, 98079482, 150216194, 229155682
Offset: 0
a(3) = 6: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, min(n-i*j, i-1), k)*
binomial(binomial(k+i-1, i), j)*j!, j=0..n/i)))
end:
a:= n-> (k-> add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k))(2):
seq(a(n), n=0..44);
-
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[b[n - i*j, Min[n - i*j, i-1], k] Binomial[Binomial[k+i-1, i], j] j!, {j, 0, n/i}]]];
a[n_] := With[{k = 2}, Sum[b[n, n, i](-1)^(k-i)Binomial[k, i], {i, 0, k}]];
a /@ Range[0, 44] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)
Showing 1-6 of 6 results.
Comments