cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A255903 Number T(n,k) of collections of nonempty multisets with a total of n objects of exactly k colors; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 3, 8, 5, 0, 5, 23, 33, 15, 0, 7, 56, 141, 144, 52, 0, 11, 127, 492, 848, 675, 203, 0, 15, 268, 1518, 3936, 5190, 3396, 877, 0, 22, 547, 4320, 15800, 30710, 32835, 18270, 4140, 0, 30, 1072, 11567, 57420, 154410, 240012, 216006, 104656, 21147
Offset: 0

Views

Author

Alois P. Heinz, Mar 10 2015

Keywords

Comments

T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = 0 for k>n.
In the case of exactly one color (k=1) each multiset of monochrome objects is fully described by its size and a collection of sizes corresponds to an integer partition. In the case of distinct colors for all objects (k=n) every multiset collection is a set partition.

Examples

			T(3,1) = 3: {{1},{1},{1}}, {{1},{1,1}}, {{1,1,1}}.
T(3,2) = 8: {{1},{1},{2}}, {{1},{2},{2}}, {{1},{1,2}}, {{1},{2,2}}, {{2},{1,1}}, {{2},{1,2}}, {{1,1,2}}, {{1,2,2}}.
T(3,3) = 5: {{1},{2},{3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1,2,3}}.
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  2,   2;
  0,  3,   8,    5;
  0,  5,  23,   33,    15;
  0,  7,  56,  141,   144,    52;
  0, 11, 127,  492,   848,   675,   203;
  0, 15, 268, 1518,  3936,  5190,  3396,   877;
  0, 22, 547, 4320, 15800, 30710, 32835, 18270, 4140;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000041 (for n>0), A255942, A255943, A255944, A255945, A255946, A255947, A255948, A255949, A255950.
Main and lower diagonals give: A000110, A255951, A255952, A255953, A255954, A255955, A255956, A255957, A255958, A255959, A255960.
Row sums give A255906.
Antidiagonal sums give A258450.
T(2n,n) gives A255907.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n=0, 1, add(A(n-j, k)*
          add(d*binomial(d+k-1, k-1), d=divisors(j)), j=1..n)/n)
        end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, Sum[A[n-j, k]*Sum[d*Binomial[d+k-1, k-1], {d, Divisors[j]}], {j, 1, n}]/n]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i * Binomial[k, i], {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12} ] // Flatten (* Jean-François Alcover, Feb 20 2016, after Alois P. Heinz *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A075196(n,k-i).
Sum_{k=0..n} k * T(n,k) = A317178(n).

A317776 Number of strict multiset partitions of normal multisets of size n, where a multiset is normal if it spans an initial interval of positive integers.

Original entry on oeis.org

1, 1, 3, 13, 59, 313, 1847, 11977, 84483, 642405, 5228987, 45297249, 415582335, 4021374193, 40895428051, 435721370413, 4850551866619, 56282199807401, 679220819360775, 8508809310177481, 110454586096508563, 1483423600240661781, 20581786429087269819
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Examples

			The a(3) = 13 strict multiset partitions:
  {{1,1,1}}, {{1},{1,1}},
  {{1,2,2}}, {{1},{2,2}}, {{2},{1,2}},
  {{1,1,2}}, {{1},{1,2}}, {{2},{1,1}},
  {{1,2,3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1},{2},{3}}.
		

Crossrefs

Programs

  • Maple
    C:= binomial:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, min(n-i*j, i-1), k)*C(C(k+i-1, i), j), j=0..n/i)))
        end:
    a:= n-> add(add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k), k=0..n):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 16 2019
  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Length[Select[Join@@mps/@allnorm[n],UnsameQ@@#&]],{n,9}]
    (* Second program: *)
    c := Binomial;
    b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[b[n - i*j, Min[n - i*j, i-1], k] c[c[k+i-1, i], j], {j, 0, n/i}]]];
    a[n_] := Sum[b[n, n, i] (-1)^(k-i) c[k, i], {k, 0, n}, {i, 0, k}];
    a /@ Range[0, 23] (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)

Extensions

a(0), a(8)-a(22) from Alois P. Heinz, Sep 16 2019

A326914 Number T(n,k) of colored integer partitions of n using all colors of a k-set such that all parts have different color patterns and a pattern for part i has i distinct colors in increasing order; triangle T(n,k), n>=0, min(j:A001787(j)>=n)<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 2, 2, 5, 1, 12, 15, 18, 64, 52, 20, 166, 340, 203, 18, 332, 1315, 1866, 877, 15, 566, 3895, 9930, 10710, 4140, 11, 864, 9770, 39960, 74438, 64520, 21147, 6, 1214, 21848, 134871, 386589, 564508, 408096, 115975, 3, 1596, 44880, 402756, 1668338, 3652712
Offset: 0

Views

Author

Alois P. Heinz, Sep 13 2019

Keywords

Comments

T(n,k) is defined for all n>=0 and k>=0. The triangle displays only positive terms. All other terms are zero.

Examples

			T(4,3) = 12: 3abc1a, 3abc1b, 3abc1c, 2ab2ac, 2ab2bc, 2ac2bc, 2ab1a1c, 2ab1b1c, 2ac1a1b, 2ac1b1c, 2bc1a1b, 2bc1a1c.
Triangle T(n,k) begins:
  1;
     1;
        2;
        2,  5;
        1, 12,   15;
           18,   64,    52;
           20,  166,   340,    203;
           18,  332,  1315,   1866,    877;
           15,  566,  3895,   9930,  10710,   4140;
           11,  864,  9770,  39960,  74438,  64520,  21147;
            6, 1214, 21848, 134871, 386589, 564508, 408096, 115975;
  ...
		

Crossrefs

Main diagonal gives A000110.
Row sums give A116539.
Column sums give A003465.
Cf. A001787, A255903, A326962 (this triangle read by columns), A327115, A327116, A327117.

Programs

  • Maple
    C:= binomial:
    g:= proc(n) option remember; n*2^(n-1) end:
    h:= proc(n) option remember; local k; for k from
          `if`(n=0, 0, h(n-1)) do if g(k)>=n then return k fi od
        end:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, min(n-i*j, i-1), k)*C(C(k, i), j), j=0..n/i)))
        end:
    T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k):
    seq(seq(T(n, k), k=h(n)..n), n=0..12);
  • Mathematica
    c = Binomial;
    g[n_] := g[n] = n*2^(n - 1);
    h[n_] := h[n] = Module[{k}, For[k = If[n == 0, 0, h[n - 1]], True, k++, If[g[k] >= n, Return[k]]]];
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k] c[c[k, i], j], {j, 0, n/i}]]];
    T[n_, k_] := Sum[b[n, n, i] (-1)^(k - i) c[k, i], {i, 0, k}];
    Table[Table[T[n, k], {k, h[n], n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A327115(n).
T(n*2^(n-1),n) = T(A001787(n),n) = 1.
T(n*2^(n-1)-1,n) = n for n >= 2.

A326962 Number T(n,k) of colored integer partitions of n using all colors of a k-set such that all parts have different color patterns and a pattern for part i has i distinct colors in increasing order; triangle T(n,k), k>=0, k<=n<=k*2^(k-1), read by columns.

Original entry on oeis.org

1, 1, 2, 2, 1, 5, 12, 18, 20, 18, 15, 11, 6, 3, 1, 15, 64, 166, 332, 566, 864, 1214, 1596, 1975, 2320, 2600, 2780, 2842, 2780, 2600, 2320, 1979, 1608, 1238, 908, 626, 404, 246, 136, 69, 32, 12, 4, 1, 52, 340, 1315, 3895, 9770, 21848, 44880, 86275, 157140
Offset: 0

Views

Author

Alois P. Heinz, Sep 13 2019

Keywords

Comments

T(n,k) is defined for all n>=0 and k>=0. The triangle displays only positive terms. All other terms are zero.

Examples

			T(4,3) = 12: 3abc1a, 3abc1b, 3abc1c, 2ab2ac, 2ab2bc, 2ac2bc, 2ab1a1c, 2ab1b1c, 2ac1a1b, 2ac1b1c, 2bc1a1b, 2bc1a1c.
Triangle T(n,k) begins:
  1;
     1;
        2;
        2,  5;
        1, 12,   15;
           18,   64,    52;
           20,  166,   340,    203;
           18,  332,  1315,   1866,    877;
           15,  566,  3895,   9930,  10710,   4140;
           11,  864,  9770,  39960,  74438,  64520,  21147;
            6, 1214, 21848, 134871, 386589, 564508, 408096, 115975;
  ...
		

Crossrefs

Main diagonal gives A000110.
Row sums give A116539.
Column sums give A003465.
Cf. A001787, A255903, A326914 (this triangle read by rows), A327115, A327116, A327117.

Programs

  • Maple
    C:= binomial:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, min(n-i*j, i-1), k)*C(C(k, i), j), j=0..n/i)))
        end:
    T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k):
    seq(seq(T(n, k), n=k..k*2^(k-1)), k=0..5);
  • Mathematica
    c = Binomial;
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k] c[c[k, i], j], {j, 0, n/i}]]];
    T[n_, k_] := Sum[b[n, n, i] (-1)^(k-i) c[k, i], {i, 0, k}];
    Table[Table[T[n, k], {n, k, k 2^(k-1)}], {k, 0, 5}] // Flatten (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A327115(n).
T(n*2^(n-1),n) = T(A001787(n),n) = 1.
T(n*2^(n-1)-1,n) = n for n >= 2.

A327117 Number T(n,k) of colored integer partitions of n using all colors of a k-set such that a color pattern for part i has i distinct colors in increasing order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 4, 5, 0, 1, 7, 18, 15, 0, 1, 10, 45, 84, 52, 0, 1, 14, 94, 298, 415, 203, 0, 1, 18, 174, 844, 1995, 2178, 877, 0, 1, 23, 300, 2081, 7440, 13638, 12131, 4140, 0, 1, 28, 486, 4652, 23670, 64898, 95823, 71536, 21147, 0, 1, 34, 756, 9682, 67390, 259599, 566447, 694676, 445356, 115975
Offset: 0

Views

Author

Alois P. Heinz, Sep 13 2019

Keywords

Comments

The sequence of column k satisfies a linear recurrence with constant coefficients of order k*2^(k-1) = A001787(k).

Examples

			T(3,2) = 4: 2ab1a, 2ab1b, 1a1a1b, 1a1b1b.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,  2;
  0, 1,  4,   5;
  0, 1,  7,  18,   15;
  0, 1, 10,  45,   84,    52;
  0, 1, 14,  94,  298,   415,    203;
  0, 1, 18, 174,  844,  1995,   2178,    877;
  0, 1, 23, 300, 2081,  7440,  13638,  12131,   4140;
  0, 1, 28, 486, 4652, 23670,  64898,  95823,  71536,  21147;
  0, 1, 34, 756, 9682, 67390, 259599, 566447, 694676, 445356, 115975;
  ...
		

Crossrefs

Columns k=0-3 give: A000007, A057427, A014616(n-1) for n>1, A327842.
Main diagonal gives A000110.
Row sums give A116540.
T(2n,n) gives A327843.

Programs

  • Maple
    C:= binomial:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, min(n-i*j, i-1), k)*C(C(k, i)+j-1, j), j=0..n/i)))
        end:
    T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i j, Min[n - i j, i - 1], k] Binomial[Binomial[k, i] + j - 1, j], {j, 0, n/i}]]];
    T[n_, k_] := Sum[b[n, n, i] (-1)^(k - i) Binomial[k, i], {i, 0, k}];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 04 2019, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A327118(n).

A309973 Number T(n,k) of colored integer partitions of n using all colors of a k-set such that parts i have distinct color patterns in arbitrary order and each pattern for a part i has i colors in (weakly) increasing order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 2, 6, 10, 0, 2, 21, 42, 47, 0, 3, 42, 177, 264, 246, 0, 4, 90, 619, 1746, 2095, 1602, 0, 5, 176, 1809, 7556, 16085, 16608, 11481, 0, 6, 348, 5211, 32621, 100030, 171480, 154385, 95503, 0, 8, 640, 13961, 120964, 522890, 1262832, 1842659, 1503232, 871030
Offset: 0

Views

Author

Alois P. Heinz, Sep 21 2019

Keywords

Examples

			T(3,1) = 2: 3aaa, 2aa1a.
T(3,2) = 6: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a.
T(3,3) = 10: 3abc, 2ab1c, 2ac1b, 2bc1a, 1a1b1c, 1a1c1b, 1b1a1c, 1b1c1a, 1c1a1b, 1c1b1a.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,   3;
  0, 2,   6,   10;
  0, 2,  21,   42,    47;
  0, 3,  42,  177,   264,    246;
  0, 4,  90,  619,  1746,   2095,   1602;
  0, 5, 176, 1809,  7556,  16085,  16608,  11481;
  0, 6, 348, 5211, 32621, 100030, 171480, 154385, 95503;
  ...
		

Crossrefs

Columns k=0-2 give: A000007, A000009 (for n>0), A327890.
Main diagonal gives A005651.
Row sums give A327679.
T(2n,n) gives A327681.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(b(n-i*j, min(n-i*j, i-1), k)*
           binomial(binomial(k+i-1, i), j)*j!, j=0..n/i)))
        end:
    T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[b[n - i j, Min[n - i j, i-1], k] Binomial[Binomial[k+i-1, i], j] j!, {j, 0, n/i}]]];
    T[n_, k_] := Sum[b[n, n, i] (-1)^(k - i) Binomial[k, i], {i, 0, k}];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2020, after Maple *)

Formula

Sum_{k=1..n} k * T(n,k) = A327680(n).

A327556 Number of colored integer partitions of 2n using all colors of an n-set such that all parts have different color patterns and a pattern for part i has i colors in (weakly) increasing order.

Original entry on oeis.org

1, 1, 15, 319, 10305, 456540, 26189661, 1870454452, 161632399892, 16535827882568, 1968749174314009, 269023182822761584, 41709476698204311667, 7266527579101535573799, 1410853257166617346437587, 303111227353456160724127886, 71611509245127165374518157052
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2019

Keywords

Crossrefs

Cf. A327116.

Programs

  • Maple
    C:= binomial:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, min(n-i*j, i-1), k)*C(C(k+i-1, i), j), j=0..n/i)))
        end:
    a:= n-> add(b(2*n$2, i)*(-1)^(n-i)*C(n, i), i=0..n):
    seq(a(n), n=0..17);
  • Mathematica
    c = Binomial;
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k] c[c[k + i - 1, i], j], {j, 0, n/i}]]];
    a[n_] := Sum[b[2n, 2n, i] (-1)^(n - i) c[n, i], {i, 0, n}];
    a /@ Range[0, 17] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)

Formula

a(n) = A327116(2n,n).

A327557 Total number of colors in all colored integer partitions of n using all colors of an initial interval of the color palette such that all parts have different color patterns and a pattern for part i has i colors in (weakly) increasing order.

Original entry on oeis.org

0, 1, 5, 29, 173, 1129, 7933, 59757, 480389, 4102233, 37059485, 352891285, 3530465753, 37001007337, 405191214949, 4625525704837, 54929552638957, 677283511701937, 8655757492783861, 114479050583748677, 1564613481125976373, 22068492671782019793
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2019

Keywords

Crossrefs

Cf. A327116.

Programs

  • Maple
    C:= binomial:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, min(n-i*j, i-1), k)*C(C(k+i-1, i), j), j=0..n/i)))
        end:
    a:= n-> add(k*add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k), k=0..n):
    seq(a(n), n=0..23);
  • Mathematica
    c = Binomial;
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k] c[c[k + i - 1, i], j], {j, 0, n/i}]]];
    a[n_] := Sum[k Sum[b[n, n, i] (-1)^(k - i) c[k, i], {i, 0, k}], {k, 0, n}];
    a /@ Range[0, 23] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n} k * A327116(n,k).

A327598 Number of colored integer partitions of n using all colors of a 2-set such that all parts have different color patterns and a pattern for part i has i colors in (weakly) increasing order.

Original entry on oeis.org

0, 0, 2, 6, 15, 32, 65, 124, 230, 414, 729, 1258, 2141, 3586, 5935, 9716, 15738, 25258, 40196, 63452, 99426, 154732, 239219, 367592, 561602, 853300, 1289777, 1939920, 2904003, 4327672, 6421572, 9489260, 13967003, 20479638, 29919253, 43556102, 63193528
Offset: 0

Views

Author

Alois P. Heinz, Sep 27 2019

Keywords

Examples

			a(2) = 2: 2ab, 1a1b.
a(3) = 6: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a.
		

Crossrefs

Column k=2 of A327116.

Programs

  • Maple
    C:= binomial:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, min(n-i*j, i-1), k)*C(C(k+i-1, i), j), j=0..n/i)))
        end:
    a:= n-> (k-> add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k))(2):
    seq(a(n), n=0..37);
  • Mathematica
    c = Binomial;
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k] c[c[k + i - 1, i], j], {j, 0, n/i}]]];
    a[n_] := With[{k = 2}, Sum[b[n, n, i] (-1)^(k - i) c[k, i], {i, 0, k}]];
    a /@ Range[0, 37] (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)

A330787 Triangle read by rows: T(n,k) is the number of strict multiset partitions of normal multisets of size n into k blocks, where a multiset is normal if it spans an initial interval of positive integers.

Original entry on oeis.org

1, 2, 1, 4, 8, 1, 8, 32, 18, 1, 16, 124, 140, 32, 1, 32, 444, 888, 432, 50, 1, 64, 1568, 5016, 4196, 1060, 72, 1, 128, 5440, 26796, 34732, 15064, 2224, 98, 1, 256, 18768, 138292, 262200, 174240, 44348, 4172, 128, 1, 512, 64432, 698864, 1870840, 1781884, 692668, 112424, 7200, 162, 1
Offset: 1

Views

Author

Andrew Howroyd, Dec 31 2019

Keywords

Examples

			Triangle begins:
    1;
    2,    1;
    4,    8,     1;
    8,   32,    18,     1;
   16,  124,   140,    32,     1;
   32,  444,   888,   432,    50,    1;
   64, 1568,  5016,  4196,  1060,   72,  1;
  128, 5440, 26796, 34732, 15064, 2224, 98, 1;
  ...
The T(3,1) = 4 multiset partitions are {{1,1,1}}, {{1,1,2}}, {{1,2,2}}, {{1,2,3}}.
The T(3,2) = 8 multiset partitions are {{1},{1,1}}, {{1},{2,2}}, {{2},{1,2}}, {{1},{1,2}}, {{2},{1,1}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}.
The T(3,3) = 1 multiset partition is {{1},{2},{3}}.
		

Crossrefs

Row sums are A317776.
Column 1 is A000079(n-1).
Main diagonal is A000012.

Programs

  • Mathematica
    B[n_, k_] := Sum[Binomial[r, k] (-1)^(r-k), {r, k, n}];
    row[n_] := Sum[B[n, j] SeriesCoefficient[ Product[(1 + x^k y)^Binomial[k + j - 1, j - 1], {k, 1, n}], {x, 0, n}], {j, 1, n}]/y + O[y]^n // CoefficientList[#, y]&;
    Array[row, 10] // Flatten (* Jean-François Alcover, Dec 17 2020, after Andrew Howroyd *)
  • PARI
    \\ here B(n, k) is A239473(n, k)
    B(n,k)={sum(r=k, n, binomial(r, k)*(-1)^(r-k))}
    Row(n)={Vecrev(sum(j=1, n, B(n,j)*polcoef(prod(k=1, n, (1 + x^k*y + O(x*x^n))^binomial(k+j-1,j-1)), n))/y)}
    { for(n=1, 10, print(Row(n))) }
Showing 1-10 of 10 results.