A309996 Number of forests of rooted identity trees with 2n colored nodes using exactly n colors.
1, 1, 60, 10746, 4191916, 2894100710, 3128432924009, 4887094401176148, 10429904418286375276, 29174096160751011237987, 103602945849963939278211780, 455474137757927866858846385930, 2428879210633773939611859814825540, 15447942216555014401018067561180236424
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..188
Crossrefs
Cf. A256068.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n<2, n, add(b(n-j, k)*add(b(d, k) *k*d*(-1)^(j/d+1), d=numtheory[divisors](j)), j=1..n-1)/(n-1)) end: a:= n-> add(b(2*n+1, n-i)*(-1)^i*binomial(n, i), i=0..n): seq(a(n), n=0..15);
-
Mathematica
b[n_, k_] := b[n, k] = If[n < 2, n, Sum[b[n - j, k]*Sum[b[d, k]*k*d*(-1)^(j/d+1), {d, Divisors[j]}], {j, 1, n-1}]/(n-1)]; a[n_] := Sum[b[2*n+1, n-i]*(-1)^i*Binomial[n, i], {i, 0, n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Sep 15 2022, after Alois P. Heinz *)
Formula
a(n) = A256068(2n+1,n).