cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309996 Number of forests of rooted identity trees with 2n colored nodes using exactly n colors.

Original entry on oeis.org

1, 1, 60, 10746, 4191916, 2894100710, 3128432924009, 4887094401176148, 10429904418286375276, 29174096160751011237987, 103602945849963939278211780, 455474137757927866858846385930, 2428879210633773939611859814825540, 15447942216555014401018067561180236424
Offset: 0

Views

Author

Alois P. Heinz, Aug 26 2019

Keywords

Crossrefs

Cf. A256068.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n<2, n, add(b(n-j, k)*add(b(d, k)
          *k*d*(-1)^(j/d+1), d=numtheory[divisors](j)), j=1..n-1)/(n-1))
        end:
    a:= n-> add(b(2*n+1, n-i)*(-1)^i*binomial(n, i), i=0..n):
    seq(a(n), n=0..15);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n < 2, n, Sum[b[n - j, k]*Sum[b[d, k]*k*d*(-1)^(j/d+1), {d, Divisors[j]}], {j, 1, n-1}]/(n-1)];
    a[n_] := Sum[b[2*n+1, n-i]*(-1)^i*Binomial[n, i], {i, 0, n}];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Sep 15 2022, after Alois P. Heinz *)

Formula

a(n) = A256068(2n+1,n).