A309999 Number of distinct values of multinomial coefficients M(n;lambda) where lambda ranges over all partitions of n into distinct parts.
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 25, 32, 35, 44, 53, 61, 72, 81, 98, 114, 130, 147, 176, 200, 229, 257, 291, 342, 387, 442, 501, 573, 642, 714, 807, 907, 1037, 1159, 1293, 1458, 1624, 1811, 2024, 2246, 2505, 2785, 3114, 3449, 3795, 4213, 4660
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..125
- Wikipedia, Multinomial coefficients
- Wikipedia, Partition (number theory)
Programs
-
Maple
g:= proc(n, i) option remember; `if`(i*(i+1)/2
binomial(n, i)*x, g(n-i, min(n-i, i-1)))[], g(n, i-1)[]})) end: a:= n-> nops(g(n$2)): seq(a(n), n=0..55); -
Mathematica
g[n_, i_] := g[n, i] = If[i(i+1)/2 < n, {}, If[n == 0, {1}, Union[ Binomial[n, i] #& /@ g[n - i, Min[n - i, i - 1]], g[n, i - 1]]]]; a[n_] := Length[g[n, n]]; a /@ Range[0, 55] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
Comments