cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309999 Number of distinct values of multinomial coefficients M(n;lambda) where lambda ranges over all partitions of n into distinct parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 25, 32, 35, 44, 53, 61, 72, 81, 98, 114, 130, 147, 176, 200, 229, 257, 291, 342, 387, 442, 501, 573, 642, 714, 807, 907, 1037, 1159, 1293, 1458, 1624, 1811, 2024, 2246, 2505, 2785, 3114, 3449, 3795, 4213, 4660
Offset: 0

Views

Author

Alois P. Heinz, Aug 26 2019

Keywords

Comments

Differs from A000009 first at n = 15: a(15) = 25 < 27 = A000009(15). There are two repeated multinomial coefficients for n = 15: 1365 = M(15;11,4) = M(15;12,2,1) and 30030 = M(15;9,5,1) = M(15;10,3,2).

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(i*(i+1)/2binomial(n, i)*x, g(n-i, min(n-i, i-1)))[], g(n, i-1)[]}))
        end:
    a:= n-> nops(g(n$2)):
    seq(a(n), n=0..55);
  • Mathematica
    g[n_, i_] := g[n, i] = If[i(i+1)/2 < n, {}, If[n == 0, {1}, Union[ Binomial[n, i] #& /@ g[n - i, Min[n - i, i - 1]], g[n, i - 1]]]];
    a[n_] := Length[g[n, n]];
    a /@ Range[0, 55] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)