cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A070289 Number of distinct values of multinomial coefficients ( n / (p1, p2, p3, ...) ) where (p1, p2, p3, ...) runs over all partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 14, 20, 27, 36, 47, 64, 79, 102, 125, 157, 193, 243, 296, 366, 441, 538, 639, 773, 911, 1092, 1294, 1532, 1799, 2131, 2475, 2901, 3369, 3935, 4554, 5292, 6084, 7033, 8087, 9292, 10617, 12198, 13880, 15874, 18039, 20541, 23263, 26414, 29838
Offset: 0

Views

Author

Naohiro Nomoto, May 12 2002

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember;
          if n=0 then {1} elif i<1 then {} else {b(n, i-1)[],
             seq(map(x-> x*i!^j, b(n-i*j, i-1))[], j=1..n/i)} fi
        end:
    a:= n-> nops(b(n, n)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 14 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i<1, {}, Union[Join[b[n, i-1], Flatten[ Table[Function[{x}, x*i!^j] /@ b[n-i*j, i-1], {j, 1, n/i}]]]]]]; a[n_] := Length[b[n, n]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 23 2015, after Alois P. Heinz *)
  • Sage
    def A070289(n):
        P = Partitions(n)
        M = set(multinomial(list(x)) for x in P)
        return len(M)
    [A070289(n) for n in range(20)]
    # Joerg Arndt, Aug 14 2012

Formula

a(n) = A215520(n,n) = A215521(2*n,n). - Alois P. Heinz, Nov 08 2012

Extensions

Terms a(n) for n >= 45 corrected by Joerg Arndt and Alois P. Heinz, Aug 14 2012

A309992 Triangle T(n,k) whose n-th row lists in increasing order the multinomial coefficients M(n;lambda), where lambda ranges over all partitions of n into distinct parts; n >= 0, 1 <= k <= A000009(n), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 4, 1, 5, 10, 1, 6, 15, 60, 1, 7, 21, 35, 105, 1, 8, 28, 56, 168, 280, 1, 9, 36, 84, 126, 252, 504, 1260, 1, 10, 45, 120, 210, 360, 840, 1260, 2520, 12600, 1, 11, 55, 165, 330, 462, 495, 1320, 2310, 4620, 6930, 27720
Offset: 0

Views

Author

Alois P. Heinz, Aug 26 2019

Keywords

Comments

First row with repeated terms is row 15, see also A309999: 1365 = M(15;11,4) = M(15;12,2,1) and 30030 = M(15;9,5,1) = M(15;10,3,2).

Examples

			For n = 5 there are 3 partitions of 5 into distinct parts: [5], [4,1], [3,2].  So row 5 contains M(5;5) = 1, M(5;4,1) = 5 and M(5;3,2) = 10.
Triangle T(n,k) begins:
  1;
  1;
  1;
  1,  3;
  1,  4;
  1,  5, 10;
  1,  6, 15,  60;
  1,  7, 21,  35, 105;
  1,  8, 28,  56, 168, 280;
  1,  9, 36,  84, 126, 252, 504, 1260;
  1, 10, 45, 120, 210, 360, 840, 1260, 2520, 12600;
  1, 11, 55, 165, 330, 462, 495, 1320, 2310,  4620, 6930, 27720;
  ...
		

Crossrefs

Columns k=1-3 give: A000012, A000027 (for n>=3), A000217(n-1) (for n>=5).
Row sums give A007837.
Rightmost terms of rows give A290517.

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(i*(i+1)/2binomial(n, i)*x, g(n-i, min(n-i, i-1)))[], g(n, i-1)[]]))
        end:
    T:= n-> sort(g(n$2))[]:
    seq(T(n), n=0..14);
  • Mathematica
    g[n_, i_] := g[n, i] = If[i(i+1)/2 < n, {}, If[n == 0, {1}, Join[ Binomial[n, i] # & /@ g[n-i, Min[n-i, i-1]], g[n, i-1]]]];
    T[n_] := Sort[g[n, n]];
    T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Jan 27 2021, after Alois P. Heinz *)
Showing 1-2 of 2 results.