cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A113869 Coefficients in asymptotic expansion of probability that a random pair of elements from the alternating group A_k generates all of A_k.

Original entry on oeis.org

1, -1, -1, -4, -23, -171, -1542, -16241, -194973, -2622610, -39027573, -636225591, -11272598680, -215668335091, -4431191311809, -97316894892644, -2275184746472827, -56421527472282127, -1479397224086870294, -40897073524132164189, -1188896226524012279617
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2006

Keywords

Crossrefs

Programs

Formula

The probability that a random pair of elements from the alternating group A_k generates all of A_k is P_k ~ 1-1/k-1/k^2-4/k^3-23/k^4-171/k^5-... = Sum_{n >= 0} a(n)/k^n.
Furthermore, P_k ~ 1 - Sum_{n >= 1} A003319(n)/[k]n, where [k]_n = k(k-1)(k-2)...(k-n+1). Therefore for n >= 2, a(n) = - Sum{i=1..n} A003319(i)*Stirling_2(n-1, i-1). - N. J. A. Sloane.
a(n) ~ -n! / (4 * (log(2))^(n+1)). - Vaclav Kotesovec, Jul 28 2015

A158094 G.f. Product_{n>=1} (1 + a(n)*x^n) = Sum_{n>=0} n!*x^n.

Original entry on oeis.org

1, 2, 4, 20, 92, 580, 4156, 34372, 314348, 3204116, 35703996, 433587396, 5687955724, 80265513140, 1211781628060, 19497537309028, 333041104402860, 6019819589363348, 114794574818830716, 2303337794614783236
Offset: 1

Views

Author

Paul D. Hanna, Apr 15 2009

Keywords

Crossrefs

Cf. A316084.

Programs

  • Maple
    A158094:= proc(n)
    option remember;
    local S;
    S:= series(add(k!*x^k,k=0..n)/mul(1+A158094(k)*x^k,k=1..n-1),x,n+1);
    coeff(S,x,n)
    end; # Robert Israel, Mar 04 2014
  • Mathematica
    a[n_] := a[n] = Module[{s}, s = Series[Sum[k!*x^k, {k, 0, n}]/Product[1+a[k]*x^k, {k, 1, n-1}], {x, 0, n+1}]; Coefficient[s, x, n]]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Mar 04 2014, after Maple *)
  • PARI
    {a(n)=if(n<1, 0, polcoeff(sum(k=0,n,k!*x^k)/prod(k=1, n-1, 1+a(k)*x^k +x*O(x^n)), n))}

Formula

a(n) ~ n! * (1 - 1/n - 1/n^2 - 4/n^3 - 23/n^4 - 171/n^5 - 1542/n^6 - 16241/n^7 - 194973/n^8 - 2622610/n^9 - 39027573/n^10 - ...), for coefficients see A113869. - Vaclav Kotesovec, Jun 18 2019

A363255 Product_{n>=1} 1 / (1 - a(n)*x^n) = 1 + 1!!*x + 3!!*x^2 + 5!!*x^3 + 7!!*x^4 + ...

Original entry on oeis.org

1, 2, 12, 86, 816, 9126, 122028, 1855802, 32001504, 613558458, 12989299596, 300515004558, 7550646317520, 204680035934550, 5955892801274796, 185157207502788074, 6125200081143892800, 214837212308039658666, 7963817560398871790604, 311101097650387613661510
Offset: 1

Views

Author

Ilya Gutkovskiy, May 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A[m_, n_] := A[m, n] = Which[m == 1, (2 n - 1)!!, m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1] A[m - 1, n - m + 1]]; a[n_] := A[n, n]; a /@ Range[1, 20]
Showing 1-3 of 3 results.