cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316101 Sequence a_k of column k shifts left when Weigh transform is applied k times with a_k(n) = n for n<2; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 3, 3, 1, 0, 1, 1, 1, 4, 6, 6, 1, 0, 1, 1, 1, 5, 10, 16, 12, 1, 0, 1, 1, 1, 6, 15, 32, 43, 25, 1, 0, 1, 1, 1, 7, 21, 55, 105, 120, 52, 1, 0, 1, 1, 1, 8, 28, 86, 210, 356, 339, 113, 1, 0, 1, 1, 1, 9, 36, 126, 371, 826, 1227, 985, 247, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 24 2018

Keywords

Examples

			Square array A(n,k) begins:
  0,  0,   0,   0,   0,    0,    0,    0,    0, ...
  1,  1,   1,   1,   1,    1,    1,    1,    1, ...
  1,  1,   1,   1,   1,    1,    1,    1,    1, ...
  1,  1,   1,   1,   1,    1,    1,    1,    1, ...
  1,  2,   3,   4,   5,    6,    7,    8,    9, ...
  1,  3,   6,  10,  15,   21,   28,   36,   45, ...
  1,  6,  16,  32,  55,   86,  126,  176,  237, ...
  1, 12,  43, 105, 210,  371,  602,  918, 1335, ...
  1, 25, 120, 356, 826, 1647, 2961, 4936, 7767, ...
		

Crossrefs

Rows include (offsets may differ): A000004, A000012, A000027, A000217, A134465.
Main diagonal gives A316102.

Programs

  • Maple
    wtr:= proc(p) local b; b:= proc(n, i) option remember;
           `if`(n=0, 1, `if`(i<1, 0, add(binomial(p(i), j)*
             b(n-i*j, i-1), j=0..n/i))) end: j-> b(j$2)
          end:
    g:= proc(k) option remember; local b, t; b[0]:= j->
         `if`(j<2, j, b[k](j-1)); for t to k do
           b[t]:= wtr(b[t-1]) od: eval(b[0])
        end:
    A:= (n, k)-> g(k)(n):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    wtr[p_] := Module[{b}, b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[p[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]]; b[#, #]&];
    g[k_] := g[k] = Module[{b, t}, b[0][j_] := If[j < 2, j, b[k][j - 1]]; For[ t = 1, t <= k + 1, t++, b[t] = wtr[b[t - 1]]]; b[0]];
    A[n_, k_] := g[k][n];
    Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jul 10 2018, after Alois P. Heinz *)