A316185 Number of strict integer partitions of the n-th prime into a prime number of prime parts.
0, 0, 1, 1, 0, 1, 0, 2, 2, 3, 5, 5, 6, 8, 10, 13, 18, 20, 26, 32, 34, 45, 54, 66, 90, 106, 117, 135, 142, 165, 269, 311, 375, 398, 546, 579, 689, 823, 938, 1107, 1301, 1352, 1790, 1850, 2078, 2153, 2878, 3811, 4241, 4338, 4828, 5495, 5637, 7076, 8000, 9032
Offset: 1
Keywords
Examples
The a(14) = 8 partitions of 43 into a prime number of distinct prime parts: (41,2), (31,7,5), (29,11,3), (23,17,3), (23,13,7), (19,17,7), (19,13,11), (17,11,7,5,3).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2000
Crossrefs
Programs
-
Maple
h:= proc(n) option remember; `if`(n=0, 0, `if`(isprime(n), n, h(n-1))) end: b:= proc(n, i, c) option remember; `if`(n=0, `if`(isprime(c), 1, 0), `if`(i<2, 0, b(n, h(i-1), c)+ `if`(i>n, 0, b(n-i, h(min(n-i, i-1)), c+1)))) end: a:= n-> b(ithprime(n)$2, 0): seq(a(n), n=1..56); # Alois P. Heinz, May 26 2021
-
Mathematica
Table[Length[Select[IntegerPartitions[Prime[n]],And[UnsameQ@@#,PrimeQ[Length[#]],And@@PrimeQ/@#]&]],{n,10}] (* Second program: *) h[n_] := h[n] = If[n == 0, 0, If[PrimeQ[n], n, h[n - 1]]]; b[n_, i_, c_] := b[n, i, c] = If[n == 0, If[PrimeQ[c], 1, 0], If[i < 2, 0, b[n, h[i - 1], c] + If[i > n, 0, b[n - i, h[Min[n - i, i - 1]], c + 1]]]]; a[n_] := b[Prime[n], Prime[n], 0]; Array[a, 56] (* Jean-François Alcover, Jun 11 2021, after Alois P. Heinz *)
-
PARI
seq(n)={my(p=vector(n, k, prime(k))); my(v=Vec(prod(k=1, n, 1 + x^p[k]*y + O(x*x^p[n])))); vector(n, k, sum(i=1, k, polcoeff(v[1+p[k]], p[i])))} \\ Andrew Howroyd, Jun 26 2018
Extensions
More terms from Alois P. Heinz, Jun 26 2018