A316223
Number of subset-sum triangles with composite a subset-sum of the integer partition with Heinz number n.
Original entry on oeis.org
0, 1, 1, 4, 1, 6, 1, 13, 4, 6, 1, 25, 1, 6, 6, 38, 1, 26, 1, 26, 6, 6
Offset: 1
We write positive subset-sum triangles in the form rootsum(branch,...,branch). The a(8) = 13 triangles:
1(1(1,1,1))
2(2(1,1,1))
3(3(1,1,1))
1(1(1),1(1,1))
2(1(1),1(1,1))
1(1(1),2(1,1))
2(1(1),2(1,1))
3(1(1),2(1,1))
1(1(1,1),1(1))
2(1(1,1),1(1))
1(1(1),1(1),1(1))
2(1(1),1(1),1(1))
3(1(1),1(1),1(1))
Cf.
A063834,
A262671,
A269134,
A276024,
A281113,
A299701,
A301934,
A301935,
A316219,
A316220,
A316222.
A319001
Number of ordered multiset partitions of integer partitions of n where the sequence of GCDs of the partitions is weakly increasing.
Original entry on oeis.org
1, 1, 3, 7, 18, 42, 105, 248, 606, 1450, 3507, 8415, 20305, 48785, 117502, 282574, 680137, 1636005, 3936841, 9470776, 22787529, 54822530, 131901491, 317336519, 763489051, 1836862947, 4419324581, 10632404189, 25580507505, 61543948594, 148068421107
Offset: 0
The a(4) = 18 ordered multiset partitions:
{{4}} {{1,3}} {{2,2}} {{1,1,2}} {{1,1,1,1}}
{{1},{3}} {{2},{2}} {{1},{1,2}} {{1},{1,1,1}}
{{1,2},{1}} {{1,1,1},{1}}
{{1,1},{2}} {{1,1},{1,1}}
{{1},{1},{2}} {{1},{1},{1,1}}
{{1},{1,1},{1}}
{{1,1},{1},{1}}
{{1},{1},{1},{1}}
Cf.
A000837,
A007716,
A055887,
A063834,
A255397,
A269134,
A276024,
A289508,
A316222,
A317545,
A317546,
A319002,
A319003.
-
\\ here B(n) is A000837 as vector.
B(n) = {dirmul(vector(n, k, moebius(k)), vector(n, k, numbpart(k)))}
seq(n) ={my(p=x*Ser(B(n))); Vec(1/prod(g=1, n, 1 - subst(p + O(x*x^(n\g)), x, x^g)))} \\ Andrew Howroyd, Jan 16 2023
a(0)=1 prepended and terms a(11) and beyond from
Andrew Howroyd, Jan 16 2023
A319003
Number of ordered multiset partitions of integer partitions of n where the sequence of LCMs of the blocks is weakly increasing.
Original entry on oeis.org
1, 1, 3, 7, 17, 38, 87, 191, 420, 908, 1954, 4160, 8816, 18549, 38851, 80965, 168077, 347566, 716443, 1472344, 3017866, 6170789, 12590805, 25640050, 52122784, 105791068, 214413852, 434007488, 877480395, 1772235212, 3575967030, 7209301989, 14523006820
Offset: 0
The a(4) = 17 ordered multiset partitions:
{{4}} {{1,3}} {{2,2}} {{1,1,2}} {{1,1,1,1}}
{{1},{3}} {{2},{2}} {{1},{1,2}} {{1},{1,1,1}}
{{1,1},{2}} {{1,1,1},{1}}
{{1},{1},{2}} {{1,1},{1,1}}
{{1},{1},{1,1}}
{{1},{1,1},{1}}
{{1,1},{1},{1}}
{{1},{1},{1},{1}}
-
seq(n)={my(M=Map()); for(m=1, n, forpart(p=m, my(k=lcm(Vec(p)), z); mapput(M, k, if(mapisdefined(M,k,&z), z, 1 + O(x*x^n)) - x^m))); Vec(1/vecprod(Mat(M)[,2]))} \\ Andrew Howroyd, Jan 16 2023
a(0)=1 prepended and terms a(11) and beyond from
Andrew Howroyd, Jan 16 2023
Showing 1-3 of 3 results.
Comments