cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A316223 Number of subset-sum triangles with composite a subset-sum of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 4, 1, 6, 1, 13, 4, 6, 1, 25, 1, 6, 6, 38, 1, 26, 1, 26, 6, 6
Offset: 1

Views

Author

Gus Wiseman, Jun 27 2018

Keywords

Comments

A positive subset-sum is a pair (h,g), where h is a positive integer and g is an integer partition, such that some submultiset of g sums to h. A triangle consists of a root sum r and a sequence of positive subset-sums ((h_1,g_1),...,(h_k,g_k)) such that the sequence (h_1,...,h_k) is weakly decreasing and has a submultiset summing to r. The composite of a triangle is (r, g_1 + ... + g_k) where + is multiset union.

Examples

			We write positive subset-sum triangles in the form rootsum(branch,...,branch). The a(8) = 13 triangles:
  1(1(1,1,1))
  2(2(1,1,1))
  3(3(1,1,1))
  1(1(1),1(1,1))
  2(1(1),1(1,1))
  1(1(1),2(1,1))
  2(1(1),2(1,1))
  3(1(1),2(1,1))
  1(1(1,1),1(1))
  2(1(1,1),1(1))
  1(1(1),1(1),1(1))
  2(1(1),1(1),1(1))
  3(1(1),1(1),1(1))
		

Crossrefs

A319001 Number of ordered multiset partitions of integer partitions of n where the sequence of GCDs of the partitions is weakly increasing.

Original entry on oeis.org

1, 1, 3, 7, 18, 42, 105, 248, 606, 1450, 3507, 8415, 20305, 48785, 117502, 282574, 680137, 1636005, 3936841, 9470776, 22787529, 54822530, 131901491, 317336519, 763489051, 1836862947, 4419324581, 10632404189, 25580507505, 61543948594, 148068421107
Offset: 0

Views

Author

Gus Wiseman, Sep 07 2018

Keywords

Comments

If we form a multiorder by treating integer partitions (a,...,z) as multiarrows GCD(a, ..., z) <= {z, ..., a}, then a(n) is the number of triangles of weight n.

Examples

			The a(4) = 18 ordered multiset partitions:
  {{4}}   {{1,3}}    {{2,2}}     {{1,1,2}}       {{1,1,1,1}}
         {{1},{3}}  {{2},{2}}   {{1},{1,2}}     {{1},{1,1,1}}
                                {{1,2},{1}}     {{1,1,1},{1}}
                                {{1,1},{2}}     {{1,1},{1,1}}
                               {{1},{1},{2}}   {{1},{1},{1,1}}
                                               {{1},{1,1},{1}}
                                               {{1,1},{1},{1}}
                                              {{1},{1},{1},{1}}
		

Crossrefs

Programs

  • PARI
    \\ here B(n) is A000837 as vector.
    B(n) = {dirmul(vector(n, k, moebius(k)), vector(n, k, numbpart(k)))}
    seq(n) ={my(p=x*Ser(B(n))); Vec(1/prod(g=1, n, 1 - subst(p + O(x*x^(n\g)), x, x^g)))} \\ Andrew Howroyd, Jan 16 2023

Extensions

a(0)=1 prepended and terms a(11) and beyond from Andrew Howroyd, Jan 16 2023

A319003 Number of ordered multiset partitions of integer partitions of n where the sequence of LCMs of the blocks is weakly increasing.

Original entry on oeis.org

1, 1, 3, 7, 17, 38, 87, 191, 420, 908, 1954, 4160, 8816, 18549, 38851, 80965, 168077, 347566, 716443, 1472344, 3017866, 6170789, 12590805, 25640050, 52122784, 105791068, 214413852, 434007488, 877480395, 1772235212, 3575967030, 7209301989, 14523006820
Offset: 0

Views

Author

Gus Wiseman, Sep 07 2018

Keywords

Comments

If we form a multiorder by treating integer partitions (a,...,z) as multiarrows LCM(a,...,z) <= {z,...,a}, then a(n) is the number of triangles of weight n.

Examples

			The a(4) = 17 ordered multiset partitions:
  {{4}}   {{1,3}}    {{2,2}}     {{1,1,2}}      {{1,1,1,1}}
         {{1},{3}}  {{2},{2}}   {{1},{1,2}}    {{1},{1,1,1}}
                                {{1,1},{2}}    {{1,1,1},{1}}
                               {{1},{1},{2}}   {{1,1},{1,1}}
                                               {{1},{1},{1,1}}
                                               {{1},{1,1},{1}}
                                               {{1,1},{1},{1}}
                                              {{1},{1},{1},{1}}
		

Crossrefs

Programs

  • PARI
    seq(n)={my(M=Map()); for(m=1, n, forpart(p=m, my(k=lcm(Vec(p)), z); mapput(M, k, if(mapisdefined(M,k,&z), z, 1 + O(x*x^n)) - x^m))); Vec(1/vecprod(Mat(M)[,2]))} \\ Andrew Howroyd, Jan 16 2023

Extensions

a(0)=1 prepended and terms a(11) and beyond from Andrew Howroyd, Jan 16 2023
Showing 1-3 of 3 results.