cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A316245 Number of ways to split an integer partition of n into consecutive subsequences with weakly decreasing sums.

Original entry on oeis.org

1, 1, 3, 6, 14, 25, 52, 89, 167, 279, 486, 786, 1322, 2069, 3326, 5128, 8004, 12055, 18384, 27203, 40588, 59186, 86645, 124583, 179784, 255111, 362767, 509319, 715422, 993681, 1380793, 1899630, 2613064, 3564177, 4857631, 6572314, 8884973, 11930363, 16002853
Offset: 0

Views

Author

Gus Wiseman, Sep 29 2018

Keywords

Examples

			The a(4) = 14 split partitions:
  (4)
  (31)
  (22)
  (211)
  (3)(1)
  (2)(2)
  (1111)
  (21)(1)
  (2)(11)
  (111)(1)
  (11)(11)
  (2)(1)(1)
  (11)(1)(1)
  (1)(1)(1)(1)
		

Crossrefs

Programs

  • Mathematica
    comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}];
    Table[Sum[Length[Select[comps[y],OrderedQ[Total/@#,GreaterEqual]&]],{y,IntegerPartitions[n]}],{n,10}]
  • PARI
    a(n)={my(recurse(r,m,s,t,f)=if(m==0, r==0, if(f, self()(r,min(m,t),t,0,0)) + self()(r,m-1,s,t,0) + if(t+m<=s, self()(r-m,min(m,r-m),s,t+m,1)))); recurse(n,n,n,0,0)} \\ Andrew Howroyd, Jan 18 2024

Extensions

a(21) onwards from Andrew Howroyd, Jan 18 2024

A317715 Number of ways to split an integer partition of n into consecutive subsequences with equal sums.

Original entry on oeis.org

1, 1, 3, 4, 9, 8, 21, 16, 39, 38, 64, 57, 146, 102, 186, 211, 352, 298, 593, 491, 906, 880, 1273, 1256, 2444, 1998, 3038, 3277, 4861, 4566, 7710, 6843, 10841, 10742, 14966, 15071, 24499, 21638, 31334, 32706, 47157, 44584, 67464, 63262, 91351, 94247, 125248
Offset: 0

Views

Author

Gus Wiseman, Sep 29 2018

Keywords

Examples

			The a(4) = 9 constant-sum split partitions:
  (4),
  (31),
  (22), (2)(2),
  (211), (2)(11),
  (1111), (11)(11), (1)(1)(1)(1).
The a(6) = 21 constant-sum split partitions:
  (6),
  (51),
  (42),
  (411),
  (33), (3)(3),
  (321), (3)(21),
  (3111), (3)(111),
  (222), (2)(2)(2),
  (2211), (2)(2)(11),
  (21111), (21)(111), (2)(11)(11),
  (111111), (111)(111), (11)(11)(11), (1)(1)(1)(1)(1)(1).
		

Crossrefs

Programs

  • Mathematica
    comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}];
    Table[Sum[Length[Select[comps[y],SameQ@@Total/@#&]],{y,IntegerPartitions[n]}],{n,10}]

Extensions

a(16)-a(46) from Hiroaki Yamanouchi, Oct 02 2018

A318434 Number of ways to split the integer partition with Heinz number n into consecutive subsequences with equal sums.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 29 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The a(3072) = 5 constant-sum split partitions:
  (21111111111)
  (21111)(111111)
  (211)(1111)(1111)
  (21)(111)(111)(111)
  (2)(11)(11)(11)(11)(11)
		

Crossrefs

Programs

  • Mathematica
    comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}];
    Table[Length[Select[comps[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],SameQ@@Total/@#&]],{n,100}]

A317508 Number of ways to split the integer partition with Heinz number n into consecutive subsequences with weakly decreasing sums.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 3, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 4, 1, 7, 2, 2, 2, 6, 1, 2, 2, 7, 1, 4, 1, 4, 3, 2, 1, 10, 2, 3, 2, 4, 1, 5, 2, 7, 2, 2, 1, 7, 1, 2, 4, 11, 2, 4, 1, 4, 2, 4, 1, 9, 1, 2, 3, 4, 2, 4, 1, 11, 5, 2, 1, 8, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 29 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The a(60) = 7 split partitions:
  (3)(2)(1)(1)
  (32)(1)(1)
  (3)(21)(1)
  (3)(2)(11)
  (321)(1)
  (32)(11)
  (3211)
		

Crossrefs

Programs

  • Mathematica
    comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}];
    Table[Length[Select[compositionPartitions[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],OrderedQ[Total/@#]&]],{n,100}]

A319002 Number of ordered factorizations of n where the sequence of GCDs of prime indices (A289508) of the factors is weakly increasing.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 5, 1, 2, 2, 8, 1, 4, 1, 5, 2, 2, 1, 12, 2, 2, 4, 5, 1, 6, 1, 16, 2, 2, 2, 11, 1, 2, 2, 12, 1, 5, 1, 5, 4, 2, 1, 28, 2, 4, 2, 5, 1, 8, 2, 12, 2, 2, 1, 18, 1, 2, 5, 32, 2, 6, 1, 5, 2, 6, 1, 29, 1, 2, 4, 5, 2, 5, 1, 28, 8, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2018

Keywords

Comments

Also the number of ordered multiset partitions of the multiset of prime indices of n where the sequence of GCDs of the blocks is weakly increasing. If we form a multiorder by treating integer partitions (a,...,z) as multiarrows GCD(a,...,z) <= {z,...,a}, then a(n) is the number of triangles whose composite ground is the integer partition with Heinz number n.

Examples

			The a(36) = 11 ordered factorizations:
  (2*2*3*3),
  (2*2*9), (2*6*3), (6*2*3), (4*3*3),
  (2*18), (18*2), (12*3), (4*9), (6*6),
  (36).
The a(36) = 11 ordered multiset partitions:
     {{1,1,2,2}}
    {{1},{1,2,2}}
    {{1,2,2},{1}}
    {{1,1,2},{2}}
    {{1,1},{2,2}}
    {{1,2},{1,2}}
   {{1},{1},{2,2}}
   {{1},{1,2},{2}}
   {{1,2},{1},{2}}
   {{1,1},{2},{2}}
  {{1},{1},{2},{2}}
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    gix[n_]:=GCD@@PrimePi/@If[n==1,{},FactorInteger[n]][[All,1]];
    Table[Length[Select[Join@@Permutations/@facs[n],OrderedQ[gix/@#]&]],{n,100}]

A319004 Number of ordered factorizations of n where the sequence of LCMs of the prime indices (A290103) of each factor is weakly increasing.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 4, 1, 2, 2, 8, 1, 5, 1, 4, 2, 2, 1, 8, 2, 2, 4, 4, 1, 5, 1, 16, 2, 2, 2, 11, 1, 2, 2, 8, 1, 5, 1, 4, 4, 2, 1, 16, 2, 5, 2, 4, 1, 12, 2, 8, 2, 2, 1, 11, 1, 2, 4, 32, 2, 5, 1, 4, 2, 5, 1, 23, 1, 2, 4, 4, 2, 5, 1, 16, 8, 2, 1, 11, 2, 2, 2, 8, 1, 12, 2, 4, 2, 2, 2, 32, 1, 5, 4, 11, 1, 5, 1, 8, 5
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2018

Keywords

Comments

Also the number of ordered multiset partitions of the multiset of prime indices of n where the sequence of LCMs of the parts is weakly increasing. If we form a multiorder by treating integer partitions (a,...,z) as multiarrows LCM(a,...,z) <= {z,...,a}, then a(n) is the number of triangles whose composite ground is the integer partition with Heinz number n.

Examples

			The a(60) = 11 ordered factorizations:
  (2*2*3*5),
  (2*2*15), (2*3*10), (2*6*5), (4*3*5),
  (2*30), (3*20), (4*15), (12*5), (6*10),
  (60).
The a(60) = 11 ordered multiset partitions:
     {{1,1,2,3}}
    {{1},{1,2,3}}
    {{2},{1,1,3}}
    {{1,1,2},{3}}
    {{1,1},{2,3}}
    {{1,2},{1,3}}
   {{1},{1},{2,3}}
   {{1},{2},{1,3}}
   {{1},{1,2},{3}}
   {{1,1},{2},{3}}
  {{1},{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    lix[n_]:=LCM@@PrimePi/@If[n==1,{},FactorInteger[n]][[All,1]];
    Table[Length[Select[Join@@Permutations/@facs[n],OrderedQ[lix/@#]&]],{n,100}]
  • PARI
    is_weakly_increasing(v) = { for(i=2,#v,if(v[i]A290103(n) = lcm(apply(p->primepi(p),factor(n)[,1]));
    A319004aux(n, facs) = if(1==n, is_weakly_increasing(apply(f -> A290103(f),Vec(facs))), my(s=0, newfacs); fordiv(n, d, if((d>1), newfacs = List(facs); listput(newfacs,d); s += A319004aux(n/d, newfacs))); (s));
    A319004(n) = if((1==n)||isprime(n),1,A319004aux(n, List([]))); \\ Antti Karttunen, Sep 23 2018

Formula

A001055(n) <= a(n) <= A074206(n). - Antti Karttunen, Sep 23 2018

Extensions

More terms from Antti Karttunen, Sep 23 2018
Showing 1-6 of 6 results.