A133494
Diagonal of the array of iterated differences of A047848.
Original entry on oeis.org
1, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987, 22876792454961, 68630377364883
Offset: 0
From _Gus Wiseman_, Jul 15 2020: (Start)
The a(0) = 1 through a(3) = 9 ways to choose a composition of each part of a composition:
() (1) (2) (3)
(1,1) (1,2)
(1),(1) (2,1)
(1,1,1)
(1),(2)
(2),(1)
(1),(1,1)
(1,1),(1)
(1),(1),(1)
(End)
Splittings of partitions are
A323583.
Multiset partitions of partitions are
A001970.
Partitions of each part of a partition are
A063834.
Compositions of each part of a partition are
A075900.
Strict partitions of each part of a strict partition are
A279785.
Compositions of each part of a strict partition are
A304961.
Strict compositions of each part of a composition are
A307068.
Compositions of each part of a strict composition are
A336127.
-
[n eq 0 select 1 else 3^(n-1): n in [0..30]]; // G. C. Greubel, Nov 20 2023
-
a:= n-> ceil(3^(n-1)):
seq(a(n), n=0..30); # Alois P. Heinz, Jul 26 2020
-
CoefficientList[Series[(1 - 2 x)/(1 - 3 x), {x, 0, 50}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 21 2011 *)
Join[{1}, 3^(Range[0, 30])] (* G. C. Greubel, Nov 20 2023 *)
-
a(n)=max(1,3^(n-1)) \\ Charles R Greathouse IV, Jul 07 2011
-
Vec((1-2*x)/(1-3*x) + O(x^100)) \\ Altug Alkan, Oct 30 2015
-
[(3^n + 2*int(n==0))//3 for n in range(31)] # G. C. Greubel, Nov 20 2023
A075900
Expansion of g.f.: Product_{n>0} 1/(1 - 2^(n-1)*x^n).
Original entry on oeis.org
1, 1, 3, 7, 19, 43, 115, 259, 659, 1523, 3731, 8531, 20883, 47379, 113043, 259219, 609683, 1385363, 3245459, 7344531, 17028499, 38579603, 88585619, 199845267, 457864595, 1028904339, 2339763603, 5256820115, 11896157587, 26626389395
Offset: 0
From _Gus Wiseman_, Jul 13 2020: (Start)
The a(0) = 1 through a(4) = 19 splittings:
() (1) (2) (3) (4)
(1,1) (1,2) (1,3)
(1),(1) (2,1) (2,2)
(1,1,1) (3,1)
(2),(1) (1,1,2)
(1,1),(1) (1,2,1)
(1),(1),(1) (2,1,1)
(2),(2)
(3),(1)
(1,1,1,1)
(1,1),(2)
(1,2),(1)
(2),(1,1)
(2,1),(1)
(1,1),(1,1)
(1,1,1),(1)
(2),(1),(1)
(1,1),(1),(1)
(1),(1),(1),(1)
(End)
Partitions of partitions are
A001970.
Splittings with equal sums are
A074854.
Splittings of compositions are
A133494.
Splittings of partitions are
A323583.
Splittings with distinct sums are
A336127.
Starting with a reversed partition gives
A316245.
Starting with a partition instead of composition gives
A336136.
-
m:=80;
R:=PowerSeriesRing(Integers(), m);
Coefficients(R!( 1/(&*[1-2^(j-1)*x^j: j in [1..m+2]]) )); // G. C. Greubel, Jan 25 2024
-
oo := 101; t1 := mul(1/(1-x^n/2),n=1..oo): t2 := series(t1,x,oo-1): t3 := seriestolist(t2): A075900 := n->2^n*t3[n+1];
with(combinat); A075900 := proc(n) local i,t1,t2,t3; t1 := partition(n); t2 := 0; for i from 1 to nops(t1) do t3 := t1[i]; t2 := t2+2^(n-nops(t3)); od: t2; end;
-
b[n_]:= b[n]= Sum[d*2^(n - n/d), {d, Divisors[n]}];
a[0]= 1; a[n_]:= a[n]= 1/n*Sum[b[k]*a[n-k], {k,n}];
Table[a[n], {n,0,30}] (* Jean-François Alcover, Mar 20 2014, after Vladeta Jovovic, fixed by Vaclav Kotesovec, Mar 08 2018 *)
-
s(m,n):=if nVladimir Kruchinin, Sep 06 2014 */
-
{a(n)=polcoeff(prod(k=1,n,1/(1-2^(k-1)*x^k+x*O(x^n))),n)} \\ Paul D. Hanna, Jan 13 2013
-
{a(n)=polcoeff(exp(sum(k=1,n+1,x^k/(k*(1-2^k*x^k)+x*O(x^n)))),n)} \\ Paul D. Hanna, Jan 13 2013
-
m=80;
def A075900_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( 1/product(1-2^(j-1)*x^j for j in range(1,m+1)) ).list()
A075900_list(m) # G. C. Greubel, Jan 25 2024
A304961
Expansion of Product_{k>=1} (1 + 2^(k-1)*x^k).
Original entry on oeis.org
1, 1, 2, 6, 12, 32, 72, 176, 384, 960, 2112, 4992, 11264, 26112, 58368, 136192, 301056, 688128, 1548288, 3489792, 7766016, 17596416, 38993920, 87293952, 194248704, 432537600, 957349888, 2132803584, 4699717632, 10406068224, 23001563136, 50683969536, 111434268672, 245819768832
Offset: 0
From _Gus Wiseman_, Jul 13 2020: (Start)
The a(0) = 1 through a(4) = 12 splittings:
() (1) (2) (3) (4)
(1,1) (1,2) (1,3)
(2,1) (2,2)
(1,1,1) (3,1)
(2),(1) (1,1,2)
(1,1),(1) (1,2,1)
(2,1,1)
(3),(1)
(1,1,1,1)
(1,2),(1)
(2,1),(1)
(1,1,1),(1)
(End)
Starting with a reversed partition gives
A323583.
Starting with a partition gives
A336134.
Partitions of partitions are
A001970.
Splittings with equal sums are
A074854.
Splittings of compositions are
A133494.
Splittings with distinct sums are
A336127.
-
nmax = 33; CoefficientList[Series[Product[(1 + 2^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
-
N=40; x='x+O('x^N); Vec(prod(k=1, N, 1+2^(k-1)*x^k)) \\ Seiichi Manyama, Aug 22 2020
A317715
Number of ways to split an integer partition of n into consecutive subsequences with equal sums.
Original entry on oeis.org
1, 1, 3, 4, 9, 8, 21, 16, 39, 38, 64, 57, 146, 102, 186, 211, 352, 298, 593, 491, 906, 880, 1273, 1256, 2444, 1998, 3038, 3277, 4861, 4566, 7710, 6843, 10841, 10742, 14966, 15071, 24499, 21638, 31334, 32706, 47157, 44584, 67464, 63262, 91351, 94247, 125248
Offset: 0
The a(4) = 9 constant-sum split partitions:
(4),
(31),
(22), (2)(2),
(211), (2)(11),
(1111), (11)(11), (1)(1)(1)(1).
The a(6) = 21 constant-sum split partitions:
(6),
(51),
(42),
(411),
(33), (3)(3),
(321), (3)(21),
(3111), (3)(111),
(222), (2)(2)(2),
(2211), (2)(2)(11),
(21111), (21)(111), (2)(11)(11),
(111111), (111)(111), (11)(11)(11), (1)(1)(1)(1)(1)(1).
-
comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}];
Table[Sum[Length[Select[comps[y],SameQ@@Total/@#&]],{y,IntegerPartitions[n]}],{n,10}]
A323433
Number of ways to split an integer partition of n into consecutive subsequences of equal length.
Original entry on oeis.org
1, 1, 3, 5, 10, 14, 25, 34, 54, 74, 109, 146, 211, 276, 381, 501, 675, 871, 1156, 1477, 1926, 2447, 3142, 3957, 5038, 6291, 7918, 9839, 12277, 15148, 18773, 23027, 28333, 34587, 42284, 51357, 62466, 75503, 91344, 109971, 132421, 158755, 190365, 227354, 271511
Offset: 0
The a(5) = 14 split partitions:
[5] [4 1] [3 2] [3 1 1] [2 2 1] [2 1 1 1] [1 1 1 1 1]
.
[4] [3] [2 1]
[1] [2] [1 1]
.
[3] [2]
[1] [2]
[1] [1]
.
[2]
[1]
[1]
[1]
.
[1]
[1]
[1]
[1]
[1]
Cf.
A000005,
A000219,
A008284,
A101509,
A316245,
A319066,
A323295,
A323300,
A323307,
A323429,
A323434.
-
b:= proc(n, i, t) option remember; `if`(n=0 or i=1, numtheory
[tau](t+n), b(n, i-1, t)+b(n-i, min(n-i, i), t+1))
end:
a:= n-> `if`(n=0, 1, b(n$2, 0)):
seq(a(n), n=0..50); # Alois P. Heinz, Jan 15 2019
-
Table[Sum[Length[Divisors[Length[ptn]]],{ptn,IntegerPartitions[n]}],{n,30}]
(* Second program: *)
b[n_, i_, t_] := b[n, i, t] = If[n == 0 || i == 1,
DivisorSigma[0, t+n], b[n, i-1, t] + b[n-i, Min[n-i, i], t+1]];
a[n_] := If[n == 0, 1, b[n, n, 0]];
a /@ Range[0, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
-
my(N=66, x='x+O('x^N)); Vec(1+sum(k=1, N, numdiv(k)*x^k/prod(j=1, k, 1-x^j))) \\ Seiichi Manyama, Jan 21 2022
-
my(N=66, x='x+O('x^N)); Vec(1+sum(i=1, N, sum(j=1, N\i, x^(i*j)/prod(k=1, i*j, 1-x^k)))) \\ Seiichi Manyama, Jan 21 2022
A336127
Number of ways to split a composition of n into contiguous subsequences with different sums.
Original entry on oeis.org
1, 1, 2, 8, 16, 48, 144, 352, 896, 2432, 7168, 16896, 46080, 114688, 303104, 843776, 2080768, 5308416, 13762560, 34865152, 87818240, 241172480, 583008256, 1503657984, 3762290688, 9604956160, 23689428992, 60532195328, 156397207552, 385137770496, 967978254336
Offset: 0
The a(0) = 1 through a(4) = 16 splits:
() (1) (2) (3) (4)
(1,1) (1,2) (1,3)
(2,1) (2,2)
(1,1,1) (3,1)
(1),(2) (1,1,2)
(2),(1) (1,2,1)
(1),(1,1) (1),(3)
(1,1),(1) (2,1,1)
(3),(1)
(1,1,1,1)
(1),(1,2)
(1),(2,1)
(1,2),(1)
(2,1),(1)
(1),(1,1,1)
(1,1,1),(1)
The version with equal instead of different sums is
A074854.
Starting with a strict composition gives
A336128.
Starting with a partition gives
A336131.
Starting with a strict partition gives
A336132
Partitions of partitions are
A001970.
Partitions of compositions are
A075900.
Compositions of compositions are
A133494.
Compositions of partitions are
A323583.
-
splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,Join@@Permutations/@IntegerPartitions[n]}],{n,0,10}]
A318684
Number of ways to split a strict integer partition of n into consecutive subsequences with strictly decreasing sums.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 8, 11, 14, 20, 28, 35, 48, 61, 79, 105, 129, 162, 208, 257, 318, 404, 489, 600, 732, 896, 1075, 1315, 1576, 1895, 2272, 2715, 3217, 3851, 4537, 5377, 6353, 7484, 8765, 10314, 12044, 14079, 16420, 19114, 22184, 25818, 29840, 34528, 39903, 46030
Offset: 0
The a(9) = 20 split partitions:
(9)
(81) (8)(1)
(72) (7)(2)
(63) (6)(3)
(54) (5)(4)
(432) (43)(2) (4)(3)(2)
(621) (62)(1) (6)(2)(1) (6)(21)
(531) (53)(1) (5)(3)(1) (5)(31)
-
comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}];
Table[Sum[Length[Select[comps[y],OrderedQ[Total/@#,Greater]&]],{y,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,30}]
A319794
Number of ways to split a strict integer partition of n into consecutive subsequences with weakly decreasing sums.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 9, 11, 15, 20, 31, 37, 52, 64, 85, 111, 141, 175, 225, 279, 346, 437, 532, 654, 802, 979, 1182, 1438, 1740, 2083, 2502, 2996, 3565, 4245, 5043, 5950, 7068, 8303, 9772, 11449, 13452, 15681, 18355, 21338, 24855, 28846, 33509, 38687, 44819, 51644
Offset: 0
The a(6) = 9 split partitions:
(6)
(51) (5)(1)
(42) (4)(2)
(321) (32)(1) (3)(21) (3)(2)(1).
-
comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}];
Table[Sum[Length[Select[comps[y],OrderedQ[Total/@#,GreaterEqual]&]],{y,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,30}]
A074854
a(n) = Sum_{d|n} (2^(n-d)).
Original entry on oeis.org
1, 3, 5, 13, 17, 57, 65, 209, 321, 801, 1025, 3905, 4097, 12417, 21505, 53505, 65537, 233985, 262145, 885761, 1327105, 3147777, 4194305, 16060417, 17825793, 50339841, 84148225, 220217345, 268435457, 990937089, 1073741825, 3506503681
Offset: 1
Divisors of 6 = 1,2,3,6 and 6-1 = 5, 6-2 = 4, 6-3 = 3, 6-6 = 0. a(6) = 2^5 + 2^4 + 2^3 + 2^0 = 32 + 16 + 8 + 1 = 57.
G.f. = x + 3*x^2 + 5*x^3 + 13*x^4 + 17*x^5 + 57*x^6 + 65*x^7 + ...
a(14) = 1 + 2^7 + 2^12 + 2^13 = 12417. - _Gus Wiseman_, Jun 20 2018
The version looking at lengths instead of sums is
A101509.
The strictly increasing (or strictly decreasing) version is
A304961.
Starting with a partition gives
A317715.
Starting with a strict partition gives
A318683.
Requiring distinct instead of equal sums gives
A336127.
Starting with a strict composition gives
A336130.
Partitions of partitions are
A001970.
Splittings of compositions are
A133494.
Splittings of partitions are
A323583.
-
a[ n_] := If[ n < 1, 0, Sum[ 2^(n - d), {d, Divisors[n]}]] (* Michael Somos, Mar 28 2013 *)
-
a(n)=if(n<1,0,2^n*polcoeff(sum(k=1,n,2/(2-x^k),x*O(x^n)),n))
-
a(n) = sumdiv(n,d, 2^(n-d) ); /* Joerg Arndt, Mar 28 2013 */
a(14) corrected from 9407 to 12417 by
Gus Wiseman, Jun 20 2018
A318683
Number of ways to split a strict integer partition of n into consecutive subsequences with equal sums.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 5, 5, 7, 8, 12, 12, 18, 18, 26, 27, 37, 38, 53, 54, 73, 76, 100, 104, 136, 142, 183, 192, 244, 256, 327, 340, 424, 448, 558, 585, 722, 760, 937, 983, 1195, 1260, 1544, 1610, 1943, 2053, 2480, 2590, 3107, 3264, 3927, 4106, 4874, 5120, 6134, 6378
Offset: 0
The a(12) = 18 constant-sum split partitions:
(12)
(7,5)
(8,4)
(9,3)
(10,2)
(11,1)
(5,4,3)
(6,4,2)
(6,5,1)
(7,3,2)
(7,4,1)
(8,3,1)
(9,2,1)
(6)(4,2)
(6)(5,1)
(5,4,2,1)
(6,3,2,1)
(6)(3,2,1)
-
comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}];
Table[Sum[Length[Select[comps[y],SameQ@@Total/@#&]],{y,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,30}]
Showing 1-10 of 26 results.
Comments