A316245 Number of ways to split an integer partition of n into consecutive subsequences with weakly decreasing sums.
1, 1, 3, 6, 14, 25, 52, 89, 167, 279, 486, 786, 1322, 2069, 3326, 5128, 8004, 12055, 18384, 27203, 40588, 59186, 86645, 124583, 179784, 255111, 362767, 509319, 715422, 993681, 1380793, 1899630, 2613064, 3564177, 4857631, 6572314, 8884973, 11930363, 16002853
Offset: 0
Keywords
Examples
The a(4) = 14 split partitions: (4) (31) (22) (211) (3)(1) (2)(2) (1111) (21)(1) (2)(11) (111)(1) (11)(11) (2)(1)(1) (11)(1)(1) (1)(1)(1)(1)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Gus Wiseman, The a(5) = 25 split partitions.
- Gus Wiseman, The a(6) = 52 split partitions.
Crossrefs
Programs
-
Mathematica
comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}]; Table[Sum[Length[Select[comps[y],OrderedQ[Total/@#,GreaterEqual]&]],{y,IntegerPartitions[n]}],{n,10}]
-
PARI
a(n)={my(recurse(r,m,s,t,f)=if(m==0, r==0, if(f, self()(r,min(m,t),t,0,0)) + self()(r,m-1,s,t,0) + if(t+m<=s, self()(r-m,min(m,r-m),s,t+m,1)))); recurse(n,n,n,0,0)} \\ Andrew Howroyd, Jan 18 2024
Extensions
a(21) onwards from Andrew Howroyd, Jan 18 2024