cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316245 Number of ways to split an integer partition of n into consecutive subsequences with weakly decreasing sums.

Original entry on oeis.org

1, 1, 3, 6, 14, 25, 52, 89, 167, 279, 486, 786, 1322, 2069, 3326, 5128, 8004, 12055, 18384, 27203, 40588, 59186, 86645, 124583, 179784, 255111, 362767, 509319, 715422, 993681, 1380793, 1899630, 2613064, 3564177, 4857631, 6572314, 8884973, 11930363, 16002853
Offset: 0

Views

Author

Gus Wiseman, Sep 29 2018

Keywords

Examples

			The a(4) = 14 split partitions:
  (4)
  (31)
  (22)
  (211)
  (3)(1)
  (2)(2)
  (1111)
  (21)(1)
  (2)(11)
  (111)(1)
  (11)(11)
  (2)(1)(1)
  (11)(1)(1)
  (1)(1)(1)(1)
		

Crossrefs

Programs

  • Mathematica
    comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}];
    Table[Sum[Length[Select[comps[y],OrderedQ[Total/@#,GreaterEqual]&]],{y,IntegerPartitions[n]}],{n,10}]
  • PARI
    a(n)={my(recurse(r,m,s,t,f)=if(m==0, r==0, if(f, self()(r,min(m,t),t,0,0)) + self()(r,m-1,s,t,0) + if(t+m<=s, self()(r-m,min(m,r-m),s,t+m,1)))); recurse(n,n,n,0,0)} \\ Andrew Howroyd, Jan 18 2024

Extensions

a(21) onwards from Andrew Howroyd, Jan 18 2024