A316293 Number T(n,k) of permutations p of [n] such that k is the maximum of the partial sums of the signed up-down jump sequence of 0,p; triangle T(n,k), k>=0, k<=n<=k*(k+1)/2, read by columns.
1, 1, 2, 1, 5, 8, 5, 1, 16, 50, 79, 69, 34, 9, 1, 65, 314, 872, 1539, 1823, 1494, 856, 339, 89, 14, 1, 326, 2142, 8799, 24818, 50561, 76944, 89546, 80938, 57284, 31771, 13707, 4520, 1103, 188, 20, 1, 1957, 16248, 89273, 355271, 1070455, 2514044, 4705648
Offset: 0
Examples
Triangle T(n,k) begins: : 1; : 1; : 2; : 1, 5; : 8, 16; : 5, 50, 65; : 1, 79, 314, 326; : 69, 872, 2142, 1957; : 34, 1539, 8799, 16248, 13700; : 9, 1823, 24818, 89273, 137356, 109601; : 1, 1494, 50561, 355271, 947713, 1287350, 986410;
Links
- Alois P. Heinz, Columns k = 0..40, flattened
Crossrefs
Programs
-
Maple
b:= proc(u, o, c, k) option remember; `if`(c>k, 0, `if`(u+o=0, 1, add(b(u-j, o-1+j, c+j, k), j=1..u)+ add(b(u+j-1, o-j, c-j, k), j=1..o))) end: T:= (n, k)-> b(n, 0$2, k) -`if`(k=0, 0, b(n, 0$2, k-1)): seq(seq(T(n, k), n=k..k*(k+1)/2), k=0..8);
-
Mathematica
b[u_, o_, c_, k_] := b[u, o, c, k] = If[c > k, 0, If[u + o == 0, 1, Sum[b[u - j, o - 1 + j, c + j, k], {j, 1, u}] + Sum[b[u + j - 1, o - j, c - j, k], {j, 1, o}]]]; T[n_, k_] := b[n, 0, 0, k] - If[k == 0, 0, b[n, 0, 0, k - 1]]; Table[Table[T[n, k], {n, k, k(k+1)/2}], {k, 0, 8}] // Flatten (* Jean-François Alcover, Mar 14 2021, after Alois P. Heinz *)
Comments