A258829
Number T(n,k) of permutations p of [n] such that the up-down signature of 0,p has nonnegative partial sums with a maximal value of k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 11, 3, 1, 0, 16, 38, 28, 4, 1, 0, 61, 263, 130, 62, 5, 1, 0, 272, 1260, 1263, 340, 129, 6, 1, 0, 1385, 10871, 8090, 4734, 819, 261, 7, 1, 0, 7936, 66576, 88101, 33855, 16066, 1890, 522, 8, 1, 0, 50521, 694599, 724189, 495371, 127538, 52022, 4260, 1040, 9, 1
Offset: 0
p = 1432 is counted by T(4,2) because the up-down signature of 0,p = 01432 is 1,1,-1,-1 with partial sums 1,2,1,0.
q = 4321 is not counted by any T(4,k) because the up-down signature of 0,q = 04321 is 1,-1,-1,-1 with partial sums 1,0,-1,-2.
T(4,1) = 5: 2143, 3142, 3241, 4132, 4231.
T(4,2) = 11: 1324, 1423, 1432, 2134, 2314, 2413, 2431, 3124, 3412, 3421, 4123.
T(4,3) = 3: 1243, 1342, 2341.
T(4,4) = 1: 1234.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 5, 11, 3, 1;
0, 16, 38, 28, 4, 1;
0, 61, 263, 130, 62, 5, 1;
0, 272, 1260, 1263, 340, 129, 6, 1;
0, 1385, 10871, 8090, 4734, 819, 261, 7, 1;
Columns k=0-10 give:
A000007,
A000111 for n>0,
A259213,
A316390,
A316391,
A316392,
A316393,
A316394,
A316395,
A316396,
A316397.
-
b:= proc(u, o, c, k) option remember;
`if`(c<0 or c>k, 0, `if`(u+o=0, 1,
add(b(u-j, o-1+j, c+1, k), j=1..u)+
add(b(u+j-1, o-j, c-1, k), j=1..o)))
end:
A:= (n, k)-> b(n, 0$2, k):
T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
seq(seq(T(n, k), k=0..n), n=0..12);
-
b[u_, o_, c_, k_] := b[u, o, c, k] = If[c < 0 || c > k, 0, If[u + o == 0, 1, Sum[b[u - j, o - 1 + j, c + 1, k], {j, 1, u}] + Sum[b[u + j - 1, o - j, c - 1, k], {j, 1, o}]]];
A[n_, k_] := b[n, 0, 0, k];
T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
Table[T[n, k], {n, 0, 12}, { k, 0, n}] // Flatten (* Jean-François Alcover, Jun 09 2018, after Alois P. Heinz *)
A291722
Number T(n,k) of permutations p of [n] such that in 0p the sum of all jumps equals k + n; triangle T(n,k), n >= 0, 0 <= k <= n*(n-1)/2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 1, 6, 6, 5, 4, 1, 1, 1, 10, 20, 20, 26, 15, 15, 6, 5, 1, 1, 1, 15, 50, 70, 105, 106, 104, 90, 65, 51, 27, 21, 7, 6, 1, 1, 1, 21, 105, 210, 350, 497, 554, 644, 567, 574, 420, 386, 238, 203, 105, 85, 35, 28, 8, 7, 1, 1
Offset: 0
T(4,0) = 1: 1234.
T(4,1) = 6: 1243, 1324, 1342, 2134, 2314, 2341.
T(4,2) = 6: 1432, 2143, 2431, 3214, 3241, 3421.
T(4,3) = 5: 1423, 2413, 3124, 3412, 4321.
T(4,4) = 4: 3142, 4213, 4231, 4312.
T(4,5) = 1: 4123.
T(4,6) = 1: 4132.
T(5,5) = 15: 15234, 25134, 31542, 35124, 41235, 42153, 42531, 43152, 45123, 53214, 53241, 53421, 54213, 54231, 54312.
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 3, 1, 1;
1, 6, 6, 5, 4, 1, 1;
1, 10, 20, 20, 26, 15, 15, 6, 5, 1, 1;
1, 15, 50, 70, 105, 106, 104, 90, 65, 51, 27, 21, 7, 6, 1, 1;
- Alois P. Heinz, Rows n = 0..50, flattened
- R. W. Kenyon, D. B. Wilson, Double-dimer pairings and skew Young diagrams, The Electronic Journal of Combinatorics 18(1) #P130, 2011.
- J. S. Kim, K. Mészáros, G. Panova, and D. B. Wilson. Dyck tilings, increasing trees, descents, and inversions, Journal of Combinatorial Theory A 122:9-27, 2014.
-
b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
add(b(u-j, o+j-1)*x^(j-1), j=1..u)+
add(b(u+j-1, o-j)*x^(j-1), j=1..o)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(0, n)):
seq(T(n), n=0..10);
-
(* Generating function for tiles for Dyck tilings above the zigzag path of order n *)
(* Computed by looking at descents in the insertion sequence for the Dyck-tiling-ribbon bijection, described in the Kim-Meszaros-Panova-Wilson reference *)
(* Since it's above the zigzag, all insertion positions are even *)
(* When the second argument is specified, refines by position of last insertion *)
tilegen[n_, sn_] := tilegen[n, sn] = If[n == 0 || n == 1, 1,
Sum[tilegen[n - 1, j] If[j >= sn, t^(j - sn + 1), 1] //
Expand, {j, 0, 2 (n - 2), 2}]
];
tilegen[n_] := tilegen[n + 1, 2 n];
T[n_, k_] := Coefficient[tilegen[n], t, k]; (* David B. Wilson, Dec 14 2018 *)
A303697
Number T(n,k) of permutations p of [n] whose difference between sum of up-jumps and sum of down-jumps equals k; triangle T(n,k), n>=0, min(0,1-n)<=k<=max(0,n-1), read by rows.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 4, 5, 4, 5, 4, 1, 1, 11, 19, 19, 20, 19, 19, 11, 1, 1, 26, 82, 100, 101, 100, 101, 100, 82, 26, 1, 1, 57, 334, 580, 619, 619, 620, 619, 619, 580, 334, 57, 1, 1, 120, 1255, 3394, 4339, 4420, 4421, 4420, 4421, 4420, 4339, 3394, 1255, 120, 1
Offset: 0
Triangle T(n,k) begins:
: 1 ;
: 1 ;
: 1, 0, 1 ;
: 1, 1, 2, 1, 1 ;
: 1, 4, 5, 4, 5, 4, 1 ;
: 1, 11, 19, 19, 20, 19, 19, 11, 1 ;
: 1, 26, 82, 100, 101, 100, 101, 100, 82, 26, 1 ;
: 1, 57, 334, 580, 619, 619, 620, 619, 619, 580, 334, 57, 1 ;
Cf.
A000295,
A001720,
A005165,
A008292,
A081285,
A153229,
A291680,
A291684,
A291722,
A316292,
A316293,
A321316.
-
b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
add(b(u-j, o+j-1)*x^(-j), j=1..u)+
add(b(u+j-1, o-j)*x^( j), j=1..o)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(
`if`(n=0, 1, add(b(j-1, n-j), j=1..n))):
seq(T(n), n=0..12);
-
b[u_, o_] := b[u, o] = Expand[If[u+o == 0, 1,
Sum[b[u-j, o+j-1] x^-j, {j, 1, u}] +
Sum[b[u+j-1, o-j] x^j, {j, 1, o}]]];
T[0] = {1};
T[n_] := x^n Sum[b[j-1, n-j], {j, 1, n}] // CoefficientList[#, x]& // Rest;
T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Feb 20 2021, after Alois P. Heinz *)
A316292
Number T(n,k) of permutations p of [n] such that k is the maximum of the partial sums of the signed up-down jump sequence of 0,p; triangle T(n,k), n>=0, ceiling((sqrt(1+8*n)-1)/2)<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 2, 1, 5, 8, 16, 5, 50, 65, 1, 79, 314, 326, 69, 872, 2142, 1957, 34, 1539, 8799, 16248, 13700, 9, 1823, 24818, 89273, 137356, 109601, 1, 1494, 50561, 355271, 947713, 1287350, 986410, 856, 76944, 1070455, 4923428, 10699558, 13281458, 9864101
Offset: 0
Triangle T(n,k) begins:
: 1;
: 1;
: 2;
: 1, 5;
: 8, 16;
: 5, 50, 65;
: 1, 79, 314, 326;
: 69, 872, 2142, 1957;
: 34, 1539, 8799, 16248, 13700;
: 9, 1823, 24818, 89273, 137356, 109601;
: 1, 1494, 50561, 355271, 947713, 1287350, 986410;
-
b:= proc(u, o, c, k) option remember;
`if`(c>k, 0, `if`(u+o=0, 1,
add(b(u-j, o-1+j, c+j, k), j=1..u)+
add(b(u+j-1, o-j, c-j, k), j=1..o)))
end:
T:= (n, k)-> b(n, 0$2, k) -`if`(k=0, 0, b(n, 0$2, k-1)):
seq(seq(T(n, k), k=ceil((sqrt(1+8*n)-1)/2)..n), n=0..14);
-
b[u_, o_, c_, k_] := b[u, o, c, k] =
If[c > k, 0, If[u + o == 0, 1,
Sum[b[u - j, o - 1 + j, c + j, k], {j, 1, u}] +
Sum[b[u + j - 1, o - j, c - j, k], {j, 1, o}]]];
T[n_, k_] := b[n, 0, 0, k] - If[k == 0, 0, b[n, 0, 0, k - 1]];
Table[Table[T[n, k], {k, Ceiling[(Sqrt[8n+1]-1)/2], n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Feb 27 2021, after Alois P. Heinz *)
A316294
Total number of permutations p of [k] such that n is the maximum of the partial sums of the signed up-down jump sequence of 0,p summed over all k >= 0.
Original entry on oeis.org
1, 1, 3, 19, 258, 7406, 442668, 54371100, 13585980916, 6859762797636, 6969135518632452, 14209819222900305044, 58061006907633910998660, 474996314819118381967232244, 7776635831062534849079443379908, 254723669580125156112963535996038036
Offset: 0
-
b:= proc(u, o, c, k) option remember;
`if`(c>k, 0, `if`(u+o=0, 1,
add(b(u-j, o-1+j, c+j, k), j=1..u)+
add(b(u+j-1, o-j, c-j, k), j=1..o)))
end:
a:= n-> add(b(k, 0$2, n)-b(k, 0$2, n-1), k=n..n*(n+1)/2):
seq(a(n), n=0..15);
-
b[u_, o_, c_, k_] := b[u, o, c, k] =
If[c > k, 0, If[u + o == 0, 1,
Sum[b[u - j, o - 1 + j, c + j, k], {j, u}] +
Sum[b[u + j - 1, o - j, c - j, k], {j, o}]]];
a[n_] := Sum[b[k, 0, 0, n] - b[k, 0, 0, n-1], {k, n, n(n+1)/2}];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Sep 01 2021, after Alois P. Heinz *)
Showing 1-5 of 5 results.
Comments